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The identification, measurement, and 
reduction of volatile organic compounds 
(VOCs) has been a key motivator in 

recent coatings research and development 
efforts. Analytical methods for determining 
VOC levels in organic coatings continue to 
improve, as chromatographic and spectro-
scopic approaches afford a means of quanti-
fying VOC content directly in waterborne as 
well as solventborne coatings. 

Heuristic methods for estimating the vola-
tility of formulation components are com-
mon but are not extensively validated using 
quantitative structure-property relationships. 
Thus, a clearer link between component 
transport through an evolving coating matrix 
during curing processes, the bulk volatility 
of a compound, and the elution and quantifi-
cation of compounds in a gas chromatograph 
(GC) still must be made to promote innovation 
in this area. 

To address these issues, digital tools such as 
molecular descriptors and machine learning 
models are being combined with experimen-
tal measurements to better understand the 
time-dependent mechanistic nature of VOCs 
in coatings and to enable predictive control 
over the volatility and in-coating behavior of 
newly developed formulation components. 

Here, we present the development and val-
idation of a molecular structure-based neural 
network for the prediction of response factor 
for formulation components in a gas chro-
matography (GC) analysis. This represents 
an important step in creating large-scale 
computational design tools that enable in 
silico formulation, optimization, and end-
use property prediction of environmentally 
benign coatings.

INTRODUCTION
Consumer and market demand within the 
coatings industry continues to put pressure 
on formulators to create high-performance 
coatings that also have adequately low levels 
of volatile organic compounds. An ongoing 
challenge is the creation and optimization of 
important end-use coating properties while 
still meeting environmental regulation 
specifications. 

As formulators are urged to innovate 
more quickly, it has become apparent 
that traditional empirical and Edisonian 
(guess-and-test) methods, even statistically 
designed methods of formulation discovery, 
must be augmented with newer technolo-
gies, such as those represented by digiti-
zation, automation, machine learning, and 
artificial intelligence. 

There is also an increased emphasis on 
understanding chemical and physical inter-
actions within the formulation at all stages 
of the paint production, application, and 
film-forming process. The growing con-
sumer demand for environmentally benign 
“green” coatings has led to a push within 
the paint industry for improved predic-
tive models and developmental workflows 
that make use of these next generation 
technologies. 

Consider, for example, the recent 
South Coast Air Quality Management 
District (SCAQMD) Test Method 319 
(Determination of Exclusion Status for 
Compounds in Film-Forming Coatings), 
where measurement, estimation, or predic-
tion of the low vapor pressure of a formula-
tion component may lead to its exclusion in 
VOC calculation and reporting. 

Environmentally conscious consumers 
and regulatory agencies such as the U.S. 
Environmental Protection Agency (EPA) 
have continued to drive the paint and 
coatings industry towards greener for-
mulating methods, such as shifting from 
solvent-based to water-based coatings as a 
method of reducing VOCs. 

Throughout the late 1960s and 1970s, 
there was an increased concern regarding 
air pollution and the detrimental effects 
to both human and environmental health. 
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From this pollution arose the need to 
define and regulate the effect of paints 
and coatings on the local environment 
by limiting the amount of certain addi-
tives in paint which are damaging to the 
environment. 

The EPA identified volatile organic 
compounds as “any compound of 
carbon, excluding carbon monoxide, 
carbon dioxide, carbonic acid, metallic 
carbides or carbonates, and ammo-
nium carbonate, which participates in 
atmospheric photochemical reactions, 
except those designated by the EPA 
as having negligible photochemical 
reactivity.”1 

The EPA calculates compliance 
with VOC content regulations (Title 
40, Chapter I, Subchapter C, Part 59, 
Subpart D—National Volatile Organic 
Compound Emission Standards for 
Architectural Coatings S: 63 FR 48877, 
Sept. 11, 1998, §59.406) according to 
Equation 1: 

VOC	content = ("!#""#"#$)
(%#%"#%#$)

  
   

(1)

In Equation 1, VOC content = grams 
of VOC per liter of coating; Wv = mass of 
total volatiles, in grams; Ww = mass of 
water, in grams; Wec = mass of exempt 
compounds, in grams; V = volume of 
coating, in liters; Vw = volume of water, 
in liters; and Vec = volume of exempt 
compounds, in liters.

In 1984, the EPA introduced Method 
24 to quantify the amount of VOCs in 
coatings and inks sold in the United 
States. Method 24 is an indirect method 
of VOC determination, wherein the 
water content, solids content, and den-
sity of the coating are directly measured 
and used to back-calculate the amount 
of VOCs by a mass difference approach. 

Method 24 is insufficient for water-
borne coatings with low VOC content, as 
the indirect method erroneously deter-
mines small mass fractions of VOCs 
as compared to the much larger water 
weight percent, with exponentially 
increasing error below VOC content of 
approximately 250 g/L. 

As coatings shifted from solvent-based 
formulations to more environmentally 
friendly water-based formulations, the 
insufficiencies in this method motivated 
the need for new standardized regulatory 
methods and measurement procedures. 

Despite the need for improved methods, 
EPA Method 24 is currently the regula-
tory method federally mandated across 
the United States. 

States and regions throughout the 
United States have various guidelines 
that extend beyond federal rules. 
California, particularly the Los Angeles 
air basin, has faced, and continues to 
face, high prevalence of air pollution 
known as “smog,” a portmanteau coined 
in the 1900s to describe the uniquely 
industrial mixture of smoke and fog 
becoming increasingly prevalent in 
large urban areas. 

Regulatory agencies such as the 
California Air Resource Board (CARB), 
and more specifically SCAQMD, formed 
the most stringent regulations in the 
United States to reduce the local effects 
of this increasing pollution. Method 313 
is a direct method for the measurement 
and quantitation of VOCs using a gas 
chromatograph with flame ionization 
detector (GC-FID) applied to samples 
with less than 150g/L of VOCs. 

The complexity of this method is 
the main deterrent to its use. VOCs are 
quantified via multilevel calibration 
curves generated for each analyte used 
in the coating formulation.2 Relative 
response factors allow for the calcu-
lation of volatiles through this direct 
method. The regulation of VOCs is 
relative to the retention time of methyl 
palmitate. Compounds that elute prior 
to methyl palmitate are not included 
in the calculation of volatiles per liter 
coating. The complexity and laborious 
sample preparation associated with this 
method render its use undesirable and 
drove the innovation of a new standard: 
ASTM D6886. 

ASTM D6886 is a non-regulatory 
analytical method suitable for the anal-
ysis of coatings with less than 150g/L of 
VOCs, which resulted from an in-depth 
study by California Polytechnic State 
University for the California Air 
Resource Board.3 This method does not 
define a VOC as Method 313 does, rather 
it identifies and quantifies all volatiles 
within a formulation. Although it is not 
regulatory in nature, it has been widely 
adopted by SCAQMD as it provides for a 
less labor-intensive direct measurement 
of VOC content in coatings as compared 
to Method 313. 

Like Method 313, GC-FID is used in 
ADTM D6886 to quantify the vola-
tile compounds present in the mate-
rial. This method utilizes an internal 
standard, ethylene glycol diethyl ether 
(EGDE), for the calculation of response 
factors for an analyte of interest, as 
discussed in subsequent sections of this 
manuscript. Herein all response factors 
discussed were collected according to 
ASTM D6886. 

Globally, VOCs are regulated by 
federal and local governments. Looking 
beyond the United States, Europe 
developed ISO 11890, a widely employed 
direct method for the analysis of 
samples with expected VOC content 
between 0.1% and 15% by mass.4 

While Method 313 defines a VOC 
as anything that elutes before methyl 
palmitate, ISO 11890 defines a VOC as 
compounds with a boiling point below 
250 °C. This is dictated by EU Directive 
2004/42/EU.4 ASTM-D6886 and ISO 
11890 are very similar in practice, with 
direct measurements preformed via 
GC-FID, and primarily differ in the 
associated VOC determination that fol-
lows as dictated by regulatory agencies 
within relevant regions. 

Here, we combine structure-property 
relationships, neural networks, and gas 
chromatographic analytical methods 
to create a digitally enabled workflow 
that can support the formulator chemist 
while evolving as quickly as the regula-
tions themselves. 

We present a multipronged approach 
to working with, measuring, and 
understanding the nature of VOCs in 
coatings formulations. First, we present 
a method of improved prediction for 
quantifying the response factor (RF) of 
compounds being analyzed by gas chro-
matography, as a means of augmenting 
and expediting VOC determination 
by ASTM D6886 and other chromato-
graphic approaches. 

Ongoing work is employing vapor 
pressure (VP) prediction and measure-
ment to improve the working definition 
of VOC as it applies to coating produc-
tion, application, and film-formation 
processes. Finally, we propose new 
directions for incorporating these pre-
dictive approaches into the formulation 
development process.

Diving Deeper  into  VOCs
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MATERIALS AND METHODS

Response factor determination by GC
The response factor, or RF, of an analyte 
compound is the ratio between the 
chromatographic signal produced by the 
compound and the quantity or amount 
of analyte which produces the signal. 
Ideally, this ratio is 1.0, or unity, allowing 
for simple quantification and comparison 
of analyte composition in a tested mix-
ture, although differences in compound 
activity within an analytical instrument 
usually cause deviations from unity. 

The role of accurate RF measurements 
in VOC analysis is critical; with faulty RF 
information, calculations of VOC content 
in a tested formulation may not be reli-
able. Further, newly created compounds 
or additives must be characterized 
against an internal standard to empiri-
cally determine the RF before analysis of 
chromatograms may occur. 

RF allows for the quantitation of 
analyte in a mixture as compared to 
an internal standard, as defined by 
Equation 2. 

𝑅𝑅𝑅𝑅 = !"×""
!$×"$

    
           

(2)

Standards with equal weights of a 
chosen analyte and internal standard are 
used to determine the response factor 
for analyte of interest. The mass of the 
analyte added (MA) and the relative 
peak area (AA) from the FID spectrum 
are standardized by the mass of an inter-
nal standard (MI) and the associated 
peak area for that internal standard (AI). 
Ethylene glycol diethyl ether (EGDE) 
was used as the internal standard.3

Quantitative structure activity relationships 
for identifying molecular features relevant to 
response factor
The quantitative structure activity rela-
tionship (QSAR) approach makes use of 
large numbers of chemical and topolog-
ical descriptors that correlate molecular 
structure to activities or properties of 
interest.5 The use of QSAR serves two 
purposes: 1) discover or validate heuristic 
relationships and 2) provide a list of rele-
vant features or inputs for use in subse-
quent modeling and prediction exercises. 

A set of 80 compounds commonly 
seen in VOC analysis of coatings by 
GC-MS was chosen as a dataset for this 
study. Molecular structures were repre-
sented using simplified molecular-input 

line-entry system (SMILES) strings, 
which were generated for all 80 com-
pounds in the dataset on a Dell XPS 13 
9360 laptop running Windows 10. 

The Avogadro molecular editor6 was 
used to create rough three-dimensional 
geometries for each compound, which 
were then optimized using a quick energy 
minimization algorithm. Then, a total of 
5,270 descriptors were calculated for each 
compound using Dragon 7.7 Of these, 2,130 
were constant, showing no change across 
the entire set of compounds; 2,301 were 
near constant, showing negligible change 
across the compound set; 155 had at least 
one value missing or incalculable due to 
molecular structure; and 15 had all values 
missing or incalculable. These descriptors 
were removed from the analysis. 

The resultant set of 669 descriptors 
for each of the 80 compounds in the 
dataset was then subjected to correla-
tion analysis to identify the 20 descrip-
tors with the highest positive or nega-
tive correlation to RF. These descriptors 
are listed in Table 1.

The data were normalized with by 
applying Equation 3: 

(𝑅𝑅𝑅𝑅!"#$)% =
&'!(&'"#$

&'"%&(&'"#$
  
  

(3)

TABLE 1—Calculated molecular descriptor with the largest positive or negative correlation with compound response factor. 
 

Number Descriptor Definition Correlation 

1 O% Percentage of oxygen atoms -0.8480 

2 AAC Mean information index on atomic composition -0.8194 

3 IC0 Information Content index (neighborhood symmetry of 0-order) -0.8194 

4 MLOGP Moriguchi octanol-water partition coeff. (logP) 0.8071 

5 BLTA96 Verhaar Algae base-line toxicity from MLOGP (mmol/l) -0.8071 

6 BLTD48 Verhaar Daphnia base-line toxicity from MLOGP (mmol/l) -0.8071 

7 BLTF96 Verhaar Fish base-line toxicity from MLOGP (mmol/l) -0.8071 

8 Me Mean atomic Sanderson electronegativity (scaled on Carbon atom) -0.7739 

9 Mor31s Signal 31 / weighted by I-state 0.7641 

10 SM1_Dz(p) Spectral moment of order 1 from Barysz matrix weighted by polarizability 0.7614 

11 SpMin1_Bh(m) Smallest eigenvalue n. 1 of Burden matrix weighted by mass 0.7566 

12 Psi_i_A Intrinsic state pseudoconnectivity index - type S average -0.7494 

13 Psi_e_A Electrotopological state pseudoconnectivity index - type S average -0.7494 

14 BIC0 Bond Information Content index (neighborhood symmetry of 0-order) -0.7478 

15 CATS2D_00_LL CATS2D Lipophilic-Lipophilic at lag 00 0.7474 

16 CATS2D_01_LL CATS2D Lipophilic-Lipophilic at lag 01 0.7463 

17 SM1_Dz(v) 
Spectral moment of order 1 from Barysz matrix weighted by van der Waals 
volume 0.7363 

18 SIC0 Structural Information Content index (neighborhood symmetry of 0-order) -0.7325 

19 SM1_Dz(Z) 
Spectral moment of order 1 from Barysz matrix weighted by atomic 
number -0.7308 

20 Eta_alpha_A Eta average core count 0.7307 
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where RFnorm is the normalized RF of 
compound y, RFy is the response factor 
of a generic compound y, RFmax is the 
highest RF measured, and RFmin is 
the lowest RF measured, as shown in 
Table 2.  Normalizing RF constrains all 
data to a range between 0 and 1, with 
0 being the lowest RF and 1 being the 
highest RF, which allows for greater 
efficiency and accuracy during train-
ing.8 The same formula was used to 
normalize all descriptors to values 
between 0 and 1.  

Deep-learning artificial neural networks 
(DLANN) for creating production-grade  
predictive models for new compound 
response factor estimation
After normalization, the data were 
randomly divided into two groups; 60 
molecules (75%) were allocated to a 
training set to be used to build and teach 
the machine learning model, while 20 
molecules (25%) were withheld for the 
validation set. The holdout validation 
set quantifies the ability of the model to 
generalize its ruleset to compounds that 
it has never seen before. 

A deep-learning artificial neural 
network as a nonlinear regression model 
with Adam optimizer was created in 
Python 3 in a Jupyter Notebook 6.3.0 
using TensorFlow and Keras deep 
learning libraries. Loss was calcu-
lated as mean square error (MSE). 
Hyperparameter tuning revealed that 
the model achieved optimal performance 
in the training and holdout validation 
sets with 19 descriptors, 500 epochs (or 
cycles of model learning with exposure 
to the data), and one hidden layer of con-
sisting of three nodes, or perceptrons. 

RESULTS
Figure 1 shows the correlation between 
predicted and actual values of RF 
during a training and validation of a 
neural network with up to 1,000 learn-
ing cycles through the data. 

Figure 1 shows that with repeated 
learning, the trained neural network 
performs better, while the unseen data 
in the validation set is less able to be 
appropriately captured by these long-
trained models. This is an indication of 
overfitting; the trained neural network 

is effectively learning how to memorize 
the data in the training set. A compro-
mise must be selected that balances per-
formance of the trained model against 
performance of the model when used 
with new data. Here, hyperparameter 
selection indicated that 500 epochs of 
learning were a suitable stopping point 
during the model build process.

Figure 2 shows the performance of 
the RF prediction neural network after 
being trained on the dataset after 500 
epochs of model evolution. The trained 
neural network shows good agree-
ment between predicted and measured 
(experimental) values of RF, indicated 
by the close linear fit to the identity 
(x=y) line, with an R2 value of 0.90.
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FIGURE 1—Epoch selection for a single-layer artificial neural network using molecular 19 descriptors as input nodes. 
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FIGURE 2—Performance of the RF predictive neural network after 500 learning cycles on the dataset.  
A close linear fit and high R2 value (0.90) indicates that the model has adequately learned from the dataset.

Diving Deeper  into  VOCs
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#.    Compound SMILES RF Norm RF RT  Norm RT 
1. (3-Hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate CC(C)C(C(C)(C)COC(=O)C(C)C)O 1.31 0.5354 856 0.66589327 
2. [2,2,4-Trimethyl-1-(2-methylpropanoyloxy)pentyl] 2-

methylpropanoate 
CC(C)CC(C)(C)C(OC(=O)C(C)C)OC(=O)C(C)C 1.32 0.5404 

961 0.76798144 
3. 1,2-Diethoxyethane CCOCCOCC 1.00 0.3788 520 0.34106729 
4. 1,3,5-Trimethylbenzene CC1=CC(=CC(=C1)C)C 2.23 1.0000 657 0.47389791 
5. 1,4-Xylene CC1=CC=C(C=C1)C 2.20 0.9848 592 0.41067285 
6. 1-[2-(2-Methoxypropoxy)propoxy]butane CCCCOCC(C)OCC(C)OC 1.07 0.4141 791 0.60382831 
7. 1-Butoxybutane CCCCOCCCC 1.60 0.6818 590 0.40893271 
8. 1-Butoxypropan-2-ol CCCCOCC(C)O 1.15 0.4545 630 0.44779582 
9. 1-Chloro-4-(trifluoromethyl)benzene C1=CC(=CC=C1C(F)(F)F)Cl 1.10 0.4293 574 0.39327146 
10. 1-Methoxy-2-[2-(2-methoxyethoxy)ethoxy]ethane COCCOCCOCCOC 0.77 0.2626 781 0.59338747 
11. 1-Methoxypropyl acetate CCC(OC)OC(=O)C 0.88 0.3182 572 0.39153132 
12. 1-Methylpyrrolidin-2-one CN1CCCC1=O 0.96 0.3586 692 0.50812065 
13. 1-Phenoxypropan-2-ol CC(COC1=CC=CC=C1)O 1.29 0.5253 804 0.61600928 
14. 2-(2-Butoxyethoxy)ethanol CCCCOCCOCCO 1.06 0.4091 769 0.58178654 
15. 2-(2-Hydroxyethoxy)ethanol C(COCCO)O 0.49 0.1212 641 0.45823666 
16. 2-(2-Methoxyethoxy)ethanol COCCOCCO 0.70 0.2273 624 0.44199536 
17. 2-(2-Methoxypropoxy)propan-1-ol CC(CO)OCC(C)OC 0.89 0.3232 663 0.47969838 
18. 2-(2-Propoxyethoxy)ethanol CCCOCCOCCO 0.80 0.2778 718 0.53248260 
19. 2,4,7,9-Tetramethyldec-5-yne-4,7-diol CC(C)CC(C)(C#CC(C)(CC(C)C)O)O 1.62 0.6919 867 0.67691415 
20. 2-[2-(2-Hydroxyethoxy)ethoxy]ethanol C(COCCOCCO)O 0.37 0.0606 755 0.56844548 
21. 2-[2-(2-Methoxypropoxy)propoxy]propan-1-ol CC(CO)OCC(C)OCC(C)OC 0.92 0.3384 813 0.62470998 
22. 2-[2-[2-(2-Hydroxyethoxy)ethoxy]ethoxy]ethanol C(COCCOCCOCCO)O 0.56 0.1566 917 0.72563805 
23. 2-[2-[2-[2-(2-Hydroxyethoxy)ethoxy]ethoxy]ethoxy]ethanol C(COCCOCCOCCOCCO)O 0.51 0.1313 1088 0.89095128 
24. 2-[Butyl(2-hydroxyethyl)amino]ethanol CCCCN(CCO)CCO 1.10 0.4293 836 0.64733179 
25. 2-Amino-2-ethylpropane-1,3-diol CCC(CO)(CO)N 0.52 0.1364 737 0.55162413 
26. 2-Amino-2-methylpropan-1-ol CC(C)(CO)N 0.85 0.3030 488 0.31032483 
27. 2-Benzofuran-1,3-dione C1=CC=C2C(=C1)C(=O)OC2=O 0.46 0.1061 845 0.65545244 
28. 2-Butoxyethanol CCCCOCCO 0.72 0.2374 607 0.42575406 
29. 2-Butoxyethanol CCCCOCCO 1.15 0.4545 607 0.42575406 
30. 2-Ethoxyethyl acetate CCOCCOC(=O)C 1.34 0.5505 599 0.41763341 
31. 2-Ethyl-2-(hydroxymethyl)propane-1,3-diol CCC(CO)(CO)CO 1.05 0.4040 817 0.62819026 
32. 2-Ethylhexanal CCCCC(CC)C=O 1.73 0.7475 683 0.49941995 
33. 2-Ethylhexyl benzoate CCCCC(CC)COC(=O)C1=CC=CC=C1 1.58 0.6717 1041 0.84512761 
34. 2-Methylpentane-2,4-diol CC(CC(C)(C)O)O 1.09 0.4242 616 0.43387471 
35. 2-Methylprop-2-enoic acid CC(=C)C(=O)O 0.95 0.3535 505 0.32656613 
36. 2-Methylpropan-1-ol CC(C)CO 1.44 0.6010 328 0.15545244 
37. 2-tert-Butylphenol CC(C)(C)C1=CC=CC=C1O 1.66 0.7121 818 0.62935035 
38. 3-iodoprop-2-ynyl N-butylcarbamate CCCCNC(=O)OCC#CI 0.25 0.0000 1007 0.81264501 
39. 4-Methyl-1,3-dioxolan-2-one CC1COC(=O)O1 0.59 0.1717 659 0.47621810 
40. 4-Methylpentan-2-one CC(C)CC(=O)C 1.44 0.6010 473 0.29640371 
41. 5-Isocyanato-1-(isocyanatomethyl)-1,3,3-

trimethylcyclohexane 
CC1(CC(CC(C1)(C)CN=C=O)N=C=O)C 1.25 0.5051 

960 0.76682135 
42. Benzoic acid C1=CC=C(C=C1)C(=O)O 1.11 0.4343 753 0.56670534 
43. Bis(2-methylpropyl) hexanedioate CC(C)COC(=O)CCCCC(=O)OCC(C)C 1.30 0.5303 1003 0.80858469 
44. Butan-1-ol CCCCO 1.34 0.5505 395 0.22041763 
45. Butan-2-one CCC(=O)C 0.87 0.3131 328 0.15603248 
46. Butanal CCCC=O 1.20 0.4798 319 0.14733179 
47. Butyl acetate CCCCOC(=O)C 1.22 0.4899 535 0.35614849 
48. Butyl prop-2-enoate CCCCOC(=O)C=C 1.36 0.5606 598 0.41705336 
49. Decane CCCCCCCCCC 2.12 0.9444 667 0.48375870 
50. Diethyl hexanedioate CCOC(=O)CCCCC(=O)OCC 1.06 0.4091 851 0.66183295 
51. Diphenylmethanone C1=CC=C(C=C1)C(=O)C2=CC=CC=C2 2.04 0.9040 1012 0.81728538 
52. Dodecane CCCCCCCCCCCC 2.10 0.9343 773 0.58584687 
53. Ethane-1,2-diol C(CO)O 0.52 0.1364 422 0.24651972 
54. Ethanol CCO 0.85 0.3030 193 0.02552204 
55. Ethenyl acetate CC(=O)OC=C 0.52 0.1364 309 0.13747100 
56. Heptan-2-one CCCCCC(=O)C 1.58 0.6717 595 0.41415313 
57. Heptane CCCCCCC 1.94 0.8535 435 0.25928074 
58. Hexanal CCCCCC=O 1.42 0.5909 528 0.34918794 
59. Hexane CCCCCC 1.75 0.7576 325 0.15255220 
60. Methanol CO 0.58 0.1667 167 0.00000000 
61. Methyl acetate CC(=O)OC 0.55 0.1515 249 0.07946636 
62. Methyl hexadecanoate CCCCCCCCCCCCCCCC(=O)OC 1.32 0.5404 1201 1.00000000 
63. Methyl nonanoate CCCCCCCCC(=O)OC 1.42 0.5909 778 0.59048724 
64. N,N-diethylethanamine CCN(CC)CC 1.80 0.7828 419 0.24361949 
65. N-butan-2-ylidenehydroxylamine CCC(=NO)C 1.16 0.4596 504 0.32598608 
66. N-butylbutan-1-amine CCCCNCCCC 1.70 0.7323 641 0.45881671 
67. N-methyl-sarcosinol CN(C)CCO 0.84 0.2980 460 0.28364269 
68. Nonane CCCCCCCCC 2.11 0.9394 604 0.42227378 
69. Octane CCCCCCCC 2.02 0.8939 527 0.34860789 
70. Oxolane C1CCOC1 1.11 0.4343 369 0.19547564 
71. Pentadecane CCCCCCCCCCCCCCC 2.04 0.9040 909 0.71751740 
72. Phenylmethanol C1=CC=C(C=C1)CO 1.66 0.7121 691 0.50696056 
73. Propan-2-ol C[C-](C)O 0.93 0.3434 232 0.06264501 
74. Propan-2-one CC(=O)C 0.87 0.3131 218 0.04930394 
75. Propane-1,2,3-triol C(C(CO)O)O 0.55 0.1515 652 0.46867749 
76. Propane-1,2-diol CC(CO)O 0.74 0.2475 467 0.29002320 
77. tert-Butyl acetate CC(=O)OC(C)(C)C 1.24 0.5000 435 0.25928074 
78. Toluene CC1=CC=CC=C1 2.17 0.9697 507 0.32888631 
79. Tridecane CCCCCCCCCCCCC 2.10 0.9343 819 0.63051044 
80. Undecane CCCCCCCCCCC 2.13 0.9495 722 0.53712297 

TABLE 2—Response factors and retention times for 80 compound dataset for VOC analysis, with absolute and normalized values provided. 

#.    Compound SMILES RF Norm RF RT  Norm RT 
1. (3-Hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate CC(C)C(C(C)(C)COC(=O)C(C)C)O 1.31 0.5354 856 0.66589327 
2. [2,2,4-Trimethyl-1-(2-methylpropanoyloxy)pentyl] 2-

methylpropanoate 
CC(C)CC(C)(C)C(OC(=O)C(C)C)OC(=O)C(C)C 1.32 0.5404 

961 0.76798144 
3. 1,2-Diethoxyethane CCOCCOCC 1.00 0.3788 520 0.34106729 
4. 1,3,5-Trimethylbenzene CC1=CC(=CC(=C1)C)C 2.23 1.0000 657 0.47389791 
5. 1,4-Xylene CC1=CC=C(C=C1)C 2.20 0.9848 592 0.41067285 
6. 1-[2-(2-Methoxypropoxy)propoxy]butane CCCCOCC(C)OCC(C)OC 1.07 0.4141 791 0.60382831 
7. 1-Butoxybutane CCCCOCCCC 1.60 0.6818 590 0.40893271 
8. 1-Butoxypropan-2-ol CCCCOCC(C)O 1.15 0.4545 630 0.44779582 
9. 1-Chloro-4-(trifluoromethyl)benzene C1=CC(=CC=C1C(F)(F)F)Cl 1.10 0.4293 574 0.39327146 
10. 1-Methoxy-2-[2-(2-methoxyethoxy)ethoxy]ethane COCCOCCOCCOC 0.77 0.2626 781 0.59338747 
11. 1-Methoxypropyl acetate CCC(OC)OC(=O)C 0.88 0.3182 572 0.39153132 
12. 1-Methylpyrrolidin-2-one CN1CCCC1=O 0.96 0.3586 692 0.50812065 
13. 1-Phenoxypropan-2-ol CC(COC1=CC=CC=C1)O 1.29 0.5253 804 0.61600928 
14. 2-(2-Butoxyethoxy)ethanol CCCCOCCOCCO 1.06 0.4091 769 0.58178654 
15. 2-(2-Hydroxyethoxy)ethanol C(COCCO)O 0.49 0.1212 641 0.45823666 
16. 2-(2-Methoxyethoxy)ethanol COCCOCCO 0.70 0.2273 624 0.44199536 
17. 2-(2-Methoxypropoxy)propan-1-ol CC(CO)OCC(C)OC 0.89 0.3232 663 0.47969838 
18. 2-(2-Propoxyethoxy)ethanol CCCOCCOCCO 0.80 0.2778 718 0.53248260 
19. 2,4,7,9-Tetramethyldec-5-yne-4,7-diol CC(C)CC(C)(C#CC(C)(CC(C)C)O)O 1.62 0.6919 867 0.67691415 
20. 2-[2-(2-Hydroxyethoxy)ethoxy]ethanol C(COCCOCCO)O 0.37 0.0606 755 0.56844548 
21. 2-[2-(2-Methoxypropoxy)propoxy]propan-1-ol CC(CO)OCC(C)OCC(C)OC 0.92 0.3384 813 0.62470998 
22. 2-[2-[2-(2-Hydroxyethoxy)ethoxy]ethoxy]ethanol C(COCCOCCOCCO)O 0.56 0.1566 917 0.72563805 
23. 2-[2-[2-[2-(2-Hydroxyethoxy)ethoxy]ethoxy]ethoxy]ethanol C(COCCOCCOCCOCCO)O 0.51 0.1313 1088 0.89095128 
24. 2-[Butyl(2-hydroxyethyl)amino]ethanol CCCCN(CCO)CCO 1.10 0.4293 836 0.64733179 
25. 2-Amino-2-ethylpropane-1,3-diol CCC(CO)(CO)N 0.52 0.1364 737 0.55162413 
26. 2-Amino-2-methylpropan-1-ol CC(C)(CO)N 0.85 0.3030 488 0.31032483 
27. 2-Benzofuran-1,3-dione C1=CC=C2C(=C1)C(=O)OC2=O 0.46 0.1061 845 0.65545244 
28. 2-Butoxyethanol CCCCOCCO 0.72 0.2374 607 0.42575406 
29. 2-Butoxyethanol CCCCOCCO 1.15 0.4545 607 0.42575406 
30. 2-Ethoxyethyl acetate CCOCCOC(=O)C 1.34 0.5505 599 0.41763341 
31. 2-Ethyl-2-(hydroxymethyl)propane-1,3-diol CCC(CO)(CO)CO 1.05 0.4040 817 0.62819026 
32. 2-Ethylhexanal CCCCC(CC)C=O 1.73 0.7475 683 0.49941995 
33. 2-Ethylhexyl benzoate CCCCC(CC)COC(=O)C1=CC=CC=C1 1.58 0.6717 1041 0.84512761 
34. 2-Methylpentane-2,4-diol CC(CC(C)(C)O)O 1.09 0.4242 616 0.43387471 
35. 2-Methylprop-2-enoic acid CC(=C)C(=O)O 0.95 0.3535 505 0.32656613 
36. 2-Methylpropan-1-ol CC(C)CO 1.44 0.6010 328 0.15545244 
37. 2-tert-Butylphenol CC(C)(C)C1=CC=CC=C1O 1.66 0.7121 818 0.62935035 
38. 3-iodoprop-2-ynyl N-butylcarbamate CCCCNC(=O)OCC#CI 0.25 0.0000 1007 0.81264501 
39. 4-Methyl-1,3-dioxolan-2-one CC1COC(=O)O1 0.59 0.1717 659 0.47621810 
40. 4-Methylpentan-2-one CC(C)CC(=O)C 1.44 0.6010 473 0.29640371 
41. 5-Isocyanato-1-(isocyanatomethyl)-1,3,3-

trimethylcyclohexane 
CC1(CC(CC(C1)(C)CN=C=O)N=C=O)C 1.25 0.5051 

960 0.76682135 
42. Benzoic acid C1=CC=C(C=C1)C(=O)O 1.11 0.4343 753 0.56670534 
43. Bis(2-methylpropyl) hexanedioate CC(C)COC(=O)CCCCC(=O)OCC(C)C 1.30 0.5303 1003 0.80858469 
44. Butan-1-ol CCCCO 1.34 0.5505 395 0.22041763 
45. Butan-2-one CCC(=O)C 0.87 0.3131 328 0.15603248 
46. Butanal CCCC=O 1.20 0.4798 319 0.14733179 
47. Butyl acetate CCCCOC(=O)C 1.22 0.4899 535 0.35614849 
48. Butyl prop-2-enoate CCCCOC(=O)C=C 1.36 0.5606 598 0.41705336 
49. Decane CCCCCCCCCC 2.12 0.9444 667 0.48375870 
50. Diethyl hexanedioate CCOC(=O)CCCCC(=O)OCC 1.06 0.4091 851 0.66183295 
51. Diphenylmethanone C1=CC=C(C=C1)C(=O)C2=CC=CC=C2 2.04 0.9040 1012 0.81728538 
52. Dodecane CCCCCCCCCCCC 2.10 0.9343 773 0.58584687 
53. Ethane-1,2-diol C(CO)O 0.52 0.1364 422 0.24651972 
54. Ethanol CCO 0.85 0.3030 193 0.02552204 
55. Ethenyl acetate CC(=O)OC=C 0.52 0.1364 309 0.13747100 
56. Heptan-2-one CCCCCC(=O)C 1.58 0.6717 595 0.41415313 
57. Heptane CCCCCCC 1.94 0.8535 435 0.25928074 
58. Hexanal CCCCCC=O 1.42 0.5909 528 0.34918794 
59. Hexane CCCCCC 1.75 0.7576 325 0.15255220 
60. Methanol CO 0.58 0.1667 167 0.00000000 
61. Methyl acetate CC(=O)OC 0.55 0.1515 249 0.07946636 
62. Methyl hexadecanoate CCCCCCCCCCCCCCCC(=O)OC 1.32 0.5404 1201 1.00000000 
63. Methyl nonanoate CCCCCCCCC(=O)OC 1.42 0.5909 778 0.59048724 
64. N,N-diethylethanamine CCN(CC)CC 1.80 0.7828 419 0.24361949 
65. N-butan-2-ylidenehydroxylamine CCC(=NO)C 1.16 0.4596 504 0.32598608 
66. N-butylbutan-1-amine CCCCNCCCC 1.70 0.7323 641 0.45881671 
67. N-methyl-sarcosinol CN(C)CCO 0.84 0.2980 460 0.28364269 
68. Nonane CCCCCCCCC 2.11 0.9394 604 0.42227378 
69. Octane CCCCCCCC 2.02 0.8939 527 0.34860789 
70. Oxolane C1CCOC1 1.11 0.4343 369 0.19547564 
71. Pentadecane CCCCCCCCCCCCCCC 2.04 0.9040 909 0.71751740 
72. Phenylmethanol C1=CC=C(C=C1)CO 1.66 0.7121 691 0.50696056 
73. Propan-2-ol C[C-](C)O 0.93 0.3434 232 0.06264501 
74. Propan-2-one CC(=O)C 0.87 0.3131 218 0.04930394 
75. Propane-1,2,3-triol C(C(CO)O)O 0.55 0.1515 652 0.46867749 
76. Propane-1,2-diol CC(CO)O 0.74 0.2475 467 0.29002320 
77. tert-Butyl acetate CC(=O)OC(C)(C)C 1.24 0.5000 435 0.25928074 
78. Toluene CC1=CC=CC=C1 2.17 0.9697 507 0.32888631 
79. Tridecane CCCCCCCCCCCCC 2.10 0.9343 819 0.63051044 
80. Undecane CCCCCCCCCCC 2.13 0.9495 722 0.53712297 

RF=Response Factor; Norm RF= Normalized Response Factor; 
RT= Retention Time; Norm RT=Normalized Retention Time
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Figure 3 shows the performance of 
the RF prediction neural network after 
being trained on the dataset after 500 
epochs of model evolution and after 
being predicting the RF of a validation 
set of test compounds that were not 
included in the training of the model. 

The neural network shows good 
agreement during this validation stage, 
as indicated by the predicted and mea-
sured (experimental) values of RF. As 
with the training of the model in Figure 
2, the close linear fit to the identity (x=y) 
line, and an R2 value of 0.89 indicate 
a suitably high level of model perfor-
mance and predictivity.

The final, production-ready neural 
network had 19 input nodes (the list of 
most-correlated descriptors), one hidden 
layer with a modest number of three 
perceptron or computing nodes, and a 
singular output—the predicted response 
factor. The architecture of the resultant 
neural network is shown in Figure 4.

DISCUSSION
For the first time, a quantitative struc-
ture-activity relationship approach 
was combined with neural networks to 
create a machine learning model cus-
tom-built for the performance predic-
tion of formulation components being 
subjected to VOC identification and 
quantification. 

Review of the correlated descriptors 
(Table 1) indicates that the chemical 

descriptor most correlated with exper-
imental response factor is 0%, the 
percentage of oxygen atoms in the mol-
ecule. This confirms a commonly stated 
heuristic (or rule of thumb) regarding 
off-the-cuff estimation of response 
factors: as the ratio of elemental oxygen 
to carbon in the molecule increases, the 
observed response factor will decrease 
as the flame ionization detector will 
oxidize proportionally less of an oxy-
gen-rich molecule as compared to a 
molecule containing less or no elemen-
tal oxygen. Implications for the design 
of new formulation additives based on 
the remaining descriptors is forthcom-
ing in a manuscript being prepared by 
the authors.

The trained neural network model 
predicted 90.0% of the variance in the 
actual RF in the training set as shown 
in Table 3, with 3.89% mean squared 
error (MSE) and 89.3% in the validation 
set with 6.16% mean squared error MSE 
as shown in Table 4, indicating a high 
degree of accuracy and flexibility across 
many different chemical functionalities 
and a variety of GC column retention 
time behavior.

The neural network produced here 
may be implemented in predictive, 
digital lab workflows that are focused 
on in silico or virtual formulation and 
coating property prediction. Predictive 
tools that are derived from chemical 
structure and empirical measurements 
will be critical for moving research and 

development efforts into more acceler-
ated, digitally enabled regimes. 

As more predictive tools become 
available, the hope is that a common set 
of predictive tools may be used by both 
formulators as well as those concerned 
with the end-use properties and envi-
ronmental impacts of new products as 
they enter the market. The goal is to 
bridge the divide between regulatory 
agencies and coatings formulators, 
provide a science-backed means of 
prediction and regulation that enables 
innovation, and facilitate the free 
market design of new products while 
respecting the product life cycle and the 
best practices of corporate stewardship.

FUTURE WORK
This first successful implementation of a 
neural network applied to VOC analysis 
workflows opens the door for further 
development and integration of machine 
learning tools for formulation research, 
optimization, and characterization. 
Current work in progress is employing 
similar approaches to the estimation 
of compound retention time and vapor 
pressure; both properties may be used in 
an inverse design, genetic algorithm-en-
abled workflow for the discovery of new 
molecular formulation components. 

Future implementations of these 
models will be able to predict a 
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FIGURE 4—The trained artificial neural network 
with 19 descriptors as inputs, one hidden layer with 
three nodes, and one output layer (predicted RF). 
Image generated using the online tool NN-SVG.9

FIGURE 3—Using the trained neural network to predict the RF for new compounds. A close linear fit between 
predicted and actual RF, along with a high R2 value (0.89), all indicate that the model has adequately learned 
from the dataset and is able to make reasonable predictions on new compounds.



 

Compound RF Pred RF Norm RF Norm Pred RF 

[2,2,4-Trimethyl-1-(2-methylpropanoyloxy)pentyl] 2-methylpropanoate 1.32 1.376 0.540 0.569 
1,2-Diethoxyethane 1.00 1.023 0.379 0.391 
1,3,5-Trimethylbenzene 2.23 2.034 1.000 0.901 
1,4-Xylene 2.20 2.006 0.985 0.887 
1-Butoxybutane 1.60 1.627 0.682 0.696 
1-Chloro-4-(trifluoromethyl)benzene 1.10 1.012 0.429 0.385 
1-Methylpyrrolidin-2-one 0.96 0.826 0.359 0.291 
1-Phenoxypropan-2-ol 1.29 1.251 0.525 0.506 
2-(2-Hydroxyethoxy)ethanol 0.49 0.587 0.121 0.170 
2-(2-Methoxyethoxy)ethanol 0.70 0.650 0.227 0.202 
2-(2-Methoxypropoxy)propan-1-ol 0.89 0.858 0.323 0.307 
2-(2-Propoxyethoxy)ethanol 0.80 0.883 0.278 0.320 
2,4,7,9-Tetramethyldec-5-yne-4,7-diol 1.62 1.604 0.692 0.684 
2-[2-(2-Hydroxyethoxy)ethoxy]ethanol 0.37 0.546 0.061 0.150 
2-[2-(2-Methoxypropoxy)propoxy]propan-1-ol 0.92 0.812 0.338 0.284 
2-[2-[2-(2-Hydroxyethoxy)ethoxy]ethoxy]ethanol 0.56 0.490 0.157 0.121 
2-[2-[2-[2-(2-Hydroxyethoxy)ethoxy]ethoxy]ethoxy]ethanol 0.51 0.431 0.131 0.091 
2-Amino-2-ethylpropane-1,3-diol 0.52 0.797 0.136 0.276 
2-Amino-2-methylpropan-1-ol 0.85 0.976 0.303 0.366 
2-Butoxyethanol 0.72 1.156 0.237 0.458 
2-Ethoxyethyl acetate 1.34 0.732 0.551 0.243 
2-Ethyl-2-(hydroxymethyl)propane-1,3-diol 1.05 0.935 0.404 0.346 
2-Ethylhexanal 1.73 1.678 0.747 0.721 
2-Methylpentane-2,4-diol 1.09 1.160 0.424 0.459 
2-Methylprop-2-enoic acid 0.95 0.773 0.354 0.264 
2-Methylpropan-1-ol 1.44 1.362 0.601 0.562 
2-Tert-butylphenol 1.66 1.729 0.712 0.747 
3-Iodoprop-2-ynyl N-butylcarbamate 0.25 0.544 0.000 0.149 
4-Methylpentan-2-one 1.44 1.500 0.601 0.631 
5-Isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane 1.25 1.193 0.505 0.476 
Benzoic acid 1.11 1.173 0.434 0.466 
Bis(2-methylpropyl) hexanedioate 1.30 1.197 0.530 0.478 
Butan-1-ol 1.34 1.359 0.551 0.560 
Butyl acetate 1.22 1.139 0.490 0.449 
Butyl prop-2-enoate 1.36 1.181 0.561 0.470 
Decane 2.12 2.028 0.944 0.898 
Diethyl hexanedioate 1.06 0.928 0.409 0.342 
Diphenylmethanone 2.04 1.823 0.904 0.794 
Dodecane 2.10 2.047 0.934 0.908 
Ethanol 0.85 0.932 0.303 0.344 
Ethenyl acetate 0.52 0.639 0.136 0.196 
Heptan-2-one 1.58 1.589 0.672 0.676 

Heptane 1.94 2.011 0.854 0.889 
Hexanal 1.42 1.519 0.591 0.641 
Hexane 1.75 1.987 0.758 0.877 
Methanol 0.58 0.547 0.167 0.150 
Methyl acetate 0.55 0.582 0.152 0.168 
Methyl hexadecanoate 1.32 1.744 0.540 0.754 
Methyl nonanoate 1.42 1.531 0.591 0.647 
N,N-diethylethanamine 1.80 1.599 0.783 0.681 
N-butan-2-ylidenehydroxylamine 1.16 0.903 0.460 0.330 
N-methyl-sarcosinol 0.84 0.897 0.298 0.327 
Octane 2.02 2.056 0.894 0.912 
Oxolane 1.11 1.123 0.434 0.441 
Pentadecane 2.04 2.054 0.904 0.911 
Phenylmethanol 1.66 1.501 0.712 0.632 
Propan-2-ol 0.93 1.001 0.343 0.380 
Propan-2-one 0.87 0.975 0.313 0.366 
Propane-1,2-diol 0.74 0.770 0.247 0.262 
Toluene 2.17 1.970 0.970 0.869 

 

 

TABLE 3—Predicted and experimental response factors (absolute and normalized) in the training set.  

Compound RF Pred RF Norm RF Norm Pred RF 

[2,2,4-Trimethyl-1-(2-methylpropanoyloxy)pentyl] 2-methylpropanoate 1.32 1.376 0.540 0.569 
1,2-Diethoxyethane 1.00 1.023 0.379 0.391 
1,3,5-Trimethylbenzene 2.23 2.034 1.000 0.901 
1,4-Xylene 2.20 2.006 0.985 0.887 
1-Butoxybutane 1.60 1.627 0.682 0.696 
1-Chloro-4-(trifluoromethyl)benzene 1.10 1.012 0.429 0.385 
1-Methylpyrrolidin-2-one 0.96 0.826 0.359 0.291 
1-Phenoxypropan-2-ol 1.29 1.251 0.525 0.506 
2-(2-Hydroxyethoxy)ethanol 0.49 0.587 0.121 0.170 
2-(2-Methoxyethoxy)ethanol 0.70 0.650 0.227 0.202 
2-(2-Methoxypropoxy)propan-1-ol 0.89 0.858 0.323 0.307 
2-(2-Propoxyethoxy)ethanol 0.80 0.883 0.278 0.320 
2,4,7,9-Tetramethyldec-5-yne-4,7-diol 1.62 1.604 0.692 0.684 
2-[2-(2-Hydroxyethoxy)ethoxy]ethanol 0.37 0.546 0.061 0.150 
2-[2-(2-Methoxypropoxy)propoxy]propan-1-ol 0.92 0.812 0.338 0.284 
2-[2-[2-(2-Hydroxyethoxy)ethoxy]ethoxy]ethanol 0.56 0.490 0.157 0.121 
2-[2-[2-[2-(2-Hydroxyethoxy)ethoxy]ethoxy]ethoxy]ethanol 0.51 0.431 0.131 0.091 
2-Amino-2-ethylpropane-1,3-diol 0.52 0.797 0.136 0.276 
2-Amino-2-methylpropan-1-ol 0.85 0.976 0.303 0.366 
2-Butoxyethanol 0.72 1.156 0.237 0.458 
2-Ethoxyethyl acetate 1.34 0.732 0.551 0.243 
2-Ethyl-2-(hydroxymethyl)propane-1,3-diol 1.05 0.935 0.404 0.346 
2-Ethylhexanal 1.73 1.678 0.747 0.721 
2-Methylpentane-2,4-diol 1.09 1.160 0.424 0.459 
2-Methylprop-2-enoic acid 0.95 0.773 0.354 0.264 
2-Methylpropan-1-ol 1.44 1.362 0.601 0.562 
2-Tert-butylphenol 1.66 1.729 0.712 0.747 
3-Iodoprop-2-ynyl N-butylcarbamate 0.25 0.544 0.000 0.149 
4-Methylpentan-2-one 1.44 1.500 0.601 0.631 
5-Isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane 1.25 1.193 0.505 0.476 
Benzoic acid 1.11 1.173 0.434 0.466 
Bis(2-methylpropyl) hexanedioate 1.30 1.197 0.530 0.478 
Butan-1-ol 1.34 1.359 0.551 0.560 
Butyl acetate 1.22 1.139 0.490 0.449 
Butyl prop-2-enoate 1.36 1.181 0.561 0.470 
Decane 2.12 2.028 0.944 0.898 
Diethyl hexanedioate 1.06 0.928 0.409 0.342 
Diphenylmethanone 2.04 1.823 0.904 0.794 
Dodecane 2.10 2.047 0.934 0.908 
Ethanol 0.85 0.932 0.303 0.344 
Ethenyl acetate 0.52 0.639 0.136 0.196 
Heptan-2-one 1.58 1.589 0.672 0.676 

Heptane 1.94 2.011 0.854 0.889 
Hexanal 1.42 1.519 0.591 0.641 
Hexane 1.75 1.987 0.758 0.877 
Methanol 0.58 0.547 0.167 0.150 
Methyl acetate 0.55 0.582 0.152 0.168 
Methyl hexadecanoate 1.32 1.744 0.540 0.754 
Methyl nonanoate 1.42 1.531 0.591 0.647 
N,N-diethylethanamine 1.80 1.599 0.783 0.681 
N-butan-2-ylidenehydroxylamine 1.16 0.903 0.460 0.330 
N-methyl-sarcosinol 0.84 0.897 0.298 0.327 
Octane 2.02 2.056 0.894 0.912 
Oxolane 1.11 1.123 0.434 0.441 
Pentadecane 2.04 2.054 0.904 0.911 
Phenylmethanol 1.66 1.501 0.712 0.632 
Propan-2-ol 0.93 1.001 0.343 0.380 
Propan-2-one 0.87 0.975 0.313 0.366 
Propane-1,2-diol 0.74 0.770 0.247 0.262 
Toluene 2.17 1.970 0.970 0.869 

 

 

RF=Response Factor; Pred RF=Predicted Response Factor;  
Norm RF=Normalized Response Factor;  

Norm Pred RF=Normalized Predicted Response Factor
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quantified VOC content profile for a 
proposed formulation, even if certain 
components of the formulation are novel 
and have not been fully characterized by 
laboratory methods. This computational 
approach to additive and formulation 
design will assist the next generation 
of formulation scientists tasked with 
quickly and efficiently formulating and 
optimizing environmentally benign 
high-performance coatings. 
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TABLE 4—Predicted and experimental response factors (absolute and normalized) in the validation set. 

Compound RF Pred RF 
Norm 
RF 

Pred 
Norm RF 

(3-Hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate 1.31 1.39 0.535 0.555 
1-[2-(2-Methoxypropoxy)propoxy]butane 1.07 1.21 0.414 0.452 
1-Butoxypropan-2-ol 1.15 1.28 0.455 0.493 
1-Methoxy-2-[2-(2-methoxyethoxy)ethoxy]ethane 0.77 0.78 0.263 0.192 
1-Methoxypropyl acetate 0.88 0.94 0.318 0.285 
2-(2-Butoxyethoxy)ethanol 1.06 1.10 0.409 0.380 
2-[Butyl(2-hydroxyethyl)amino]ethanol 1.10 1.12 0.429 0.396 
2-Benzofuran-1,3-dione 0.46 1.13 0.106 0.404 
2-Butoxyethanol 1.15 1.22 0.455 0.458 
2-Ethylhexyl benzoate 1.58 1.65 0.672 0.711 
4-Methyl-1,3-dioxolan-2-one 0.59 0.66 0.172 0.122 
Butan-2-one 0.87 1.27 0.313 0.484 
Butanal 1.20 1.30 0.480 0.504 
Ethane-1,2-diol 0.52 0.72 0.136 0.158 
N-butylbutan-1-amine 1.70 1.73 0.732 0.761 
Nonane 2.11 1.98 0.939 0.910 
Propane-1,2,3-triol 0.55 0.69 0.152 0.140 
t-Butyl acetate 1.24 1.17 0.500 0.426 
Tridecane 2.10 1.98 0.934 0.910 
Undecane 2.13 1.97 0.949 0.903 

RF=Response Factor; Pred RF=Predicted Response Factor;  
Norm RF=Normalized Response Factor;  

Pred Norm RF= Predicted Normalized Response Factor
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