$3-7$
 Raw Materials
 Alive and Well

Despite Lower Petchem Prices

By Cypthin Challemer,
CoatingsTech Couthibrting Writer

In addition to assuring comportitive pricing and adwatagedus performance, renewable materiols suppliers must also addruss concerns about the quality: arailahilicy, and actual sutatainability of biobased raw materials, according tọ Nikolsus Foupp, globol sustainalindity manager Disporsions \& Ifigntetiti at RASH. "the ley limitations are awailathility and volume," agrees rinn Staub, global wiee prosident of Businnsis Thewhoment for Green Biologics

On the ather hatid, inyredients for painte and coatinge deriwod robrom biobased fecalsitocks are decoupled from the volatility and surpuly chiaici pirth-pwinis of traditional conating and adluesiwe componemts while timultaneously prowiding enfanced ret formance. aconding to Fich weber, gemeral manager of berformance themitents with Fisl urdwrorks. "Our customers are facinis pressure on R\&D, operatinits, anul Marketing to concinue to innowate while finding earacefective solutions, which has created a sigmiticant opportunity for functional, lew-cost building blocks and intermediates," he says.

Va chy suppliere of biobased raw niaterials and ingredietils sce, in fact, sebing continued interest in their products tospile loperer oil and gas prices. "hatarket interest in pencoralile products remans hish regarctless of the

Market interest in renewable products remains high regardless of the volatility of upstream feedstocks,

wolatility of upstrean feedstroks. The key drivers for biobased ehwinicals are: differenciated walue, pertrormance, or both; generally, performance benelits are tecorgparicd by diflerenlistion," notes Staub. There are still biobased materials that can compete economiinally, according to Kteas Kruithort, ditector of RDEl Performance Contings at AkenNobel. "We hawe sem sume oprorturities become mone dificult due to comperition with fussil noteri-als-difliculties in getting invertors For moring to scale and orher issues, but that is tra be oxpected in a deweloping: field. Whe beliewe the niarkets for forsil and biobased raw rivterials are strongly linked. In many casen it is their use in fuels and for entrys and the asseriated mimitates and tax incenimes rhat musi ahape the current market for mon-food tionases and cor resportingey biuehemicals, ${ }^{n}$ lue continules.

F'urthermorc. many consummers will chonse hinhesed chemicals when givena choice so ADM M 's custoners are wothag co fird wayg to use hitibatid chenucals when pussible to differentiate

thennelves in the noarket, according tip Tel eshill, penceral manager of Bioch dvancaged Products with ADM Fivulution Chemicals. He notes that Awp-in replacermerns such as ADM's biobased propylene glycol require the least invisitmind for consumers to use, se they teud to the the most popular prothicls. Functional replacements, or biochemicals with nowel propertie!s, require more firmorilation work to adoph, lual they can also be preferred by consumers if the products have improwtol properties, a cost advantage, or a a afety adranlago ower the current petroleun-based products. "Novel binfored chumicals hume a slower adoption rate, but are less sensitive to oil anid get priese, provided these materials have sutficient performance advantages suld eustomer benefits," agrees Rusty Pittima, wiee prestaction of Marketing and Business nevelopment with Elewnece Rentwathe Srionces.
niopel properties ale relative, howentr, and whit is important to one customer mutu not he impurrant to another. "wie believe that rather than drop-in vs not drop-in, the iselue is one of performithces and tinal product claims and diferemilation, ${ }^{\text {He }}$ notes Saub. Fernanda Thwares, ghobl marlzeting director for Ca raplife Con puration, ngrees that it depends on the project. "While having a biobestel drop-in solution that does not require a lot of refirmulation and capiral investroent is preferred, it is unusual to find sompanice willing to spend their resources to develop and launch a new produch that will not either bring performance benefits ar lower costs. Excepulims inefude developments required to meet new cegulatory and sulely requirements," she observes.

It is alan important to ensure that drop-in biobased materials, even though cleyey can he raadily used with the least barriess for surjtching, are, in fact, fit-for-purfose and de robl contain impurities or viriability that can cause issues in usc, acentidelg lo Kruithof.

Norel motecules mavi offer new propertics aricl opportunities, but have

a harder route because they need to be scaled up and reach end markets and applications at the same time，according to Kruithof．Tavares also points out that they are generally not as cost－competitive，at least initially，due to lower volumes and new manu－ facturing processes and supply clusiris． ＂In addition，the industry is not usually： willing to pay a high premium for theiri． Moreover，as with any new technology in the chemical industry，it takes time for a broader adoption，as many producls have to undergo long－term testing ind may also need to deliver improvenients in performance to justify the R\＆Ty investment，＂she says．＂Like in the tra－ ditional chemical industry，the product： from the biobased chemical industry with the strongest value proposilimos in growing market segments receive the most attention，＂asserts Pittman．

Despite the challenges，efforts lo develop and commercialize biobased solutions have been quite general and diversified，covering almost all chemi－ cal sectors．＂For the coatings industry， biobased diacids tend to receive more attention due to their broad use in rauious applications，but other biobased prod－ ucts such as polyols，epichlorohydrin， curing agents for epoxy resins，anc furtur derivatives have also been introduced in the market，＂Tavares notes．Other spterific chemicals of note include natura］oi］ polyols， CO_{2}－based polyols，bio－isillyul： and 1，4－butanediol，biobased isocyranate alternatives，and biobased solventes such as n－butanol，acetone，and ethyl acetate． according to de Guzman．

> Biosuccinic acid，with a current capacity of approximately 60 kilotonnes per year，has received significant attention as a new raw material for the production of polyurethanes（PUs）．

Thinesuctinic：acid，with a curmenc capricity of apporimately ou kile－ tonnes fer ycat，has feecived signifi－ bant attention as a new raw material tor the produetion of prolyurethant： （PTG）5uperiars include Biohimber， Hurianc，heverdia（LDSili／Kocputte JY），atid Suctinidy（TASF／Corbidn SV）． Tiosuccinilum＂biosuccinit acid from Reverdia offer painl and cosbing pro－ Hucers a range of sustainability fenefits， such as biocontent，reduced catron
 according to Rewerclin＇s ghobal manager for Appliction Therlopment Taw reter Theunissen．＂Importintly．coatines based on tivateciniun haw also becn show in con ofer differenciated properties orer currunt formulations，such wh the
 the CaDELL range of alkyd printe from

Other hiblonsed raw ninterials for the preparation of IPLts int：lude：1，3－ proponediol，octadecanedioic acid（cis， fron Eleqance），fursun dicarboxylic ach（ FDCA ，＂mantium／This『），Furan dicarbowrlic methyl ester（HDME，
 CO_{2}－bused polyester polyols（x．⿰夕㐄 Cardyom fon Comescro and conterge from Nowners，which hate ben accuired
 tamethylene disocyanate（ 1 ＂LD ）and aliphatic polyizegratiales prepated from PTJT（Covescro and Mitsul Chenical）．

Elerance is commercializimgs product lime of CLP polfole for Ful chatings and
 hands thecenable coacings with high filu perfonnauce，including hydrolytic sial itiliq：and UVY resistance along with low rinelt wiscosities allowing for low－ or wem－vou Formulations，atording to Pistnian．The semi－erystalline del
 properties，such as high preen strength．
 aigniticant interest because they can t．mable polyurthane coatinge wirl significanty hichare performance thar those made from traditional poltres
 polyurerliane coatiog are ofron used］ in withomer facine mankur segnemts． where tiobtased or sustainahle cobalines van eenerate siditional pull，＂etates Pittman．
ALMM and Dul＇ont Industrial Tingcimats wom the：Ereakthrouzh solution of the Year hward in Demember 2076 from I＇latts Glotal Energy for their Filatform technoinge cu produce FTMTE， whish is a high purity derivatiwe of FDCA．The proces begers win fructose from wom and，acomding to the fal＇c－ ribs，is sirnpler and more cffecient than traditional approaches and also posilts． in tighor yiblds．lower endry usage． and Inmer capital expenditures．They are cunently constructing ia 60 ton－per－ Fiear demonscration platil in Thocal ut，TT． that will be operational in the aecond hulral 2007% ．

Natureltorks，which has offered lach ide－bused Infoo resins，recently introduced the Wercet plachorm ollac－ bible buidding blochtis and customizable polyols and erocing and admosive themins． ＂These products offer mid－product performanco benefls，ciplitrixed system coste，anil the ability to move through che prodered derehorment prodeds faster and with minimal risk，＂according to
 able Vercet lactide－based chemiscries with lho：kruwlduge of acientists and engineers who understand low to dial ir（lace Pull capsbilities of this versatile product liue to help cuscomelra harmess the propertits of this renewable chemi－ cal technology：he acates

For examplefone cuatomer has developed at vercer-bised einulsion sis an ailand grease-resishan barrise and tulleswe: conting for paper-loased packaging. Ingeo resinis tre kivurn for their excellent oil
 seen broad use in extrusion cratings for pafer-hosed Foot pardeagers according to thelber. "CTaing the now Wercet twhnoloey, Aaturethorks l'erformance Chemicals watable lim cuspurixe the resin to now nuake a stable emulsimin that (1) Tersexatulem oil and grease barrier wouc adhesion perfurfuate and filin formation on traditional emulsion conaling lines," he sates This
 with additional cmichef-lite options at one-quarter the cout weight (g/ni ${ }^{2}$ of traditionsl polyethylencervuted matings. Ihe company is now working with other cusiminers lo dewelup Yereel-bsacd solutions in alked/polyrester coacings, pwhuretherss, non-reactive edetings, and hot melt adheriwes.

Tegetable oil-based pelvols for Irlat ind alky resion proudution ale also soeing expanded use as chemistry advances are leading la improwembents in perfarnatace, acording to de Guzman. 'lhe motil comume weratable oils, witieh are offered bry both A DhI and cargill,
 also produces contonsised a nd canola cils for paint and coatings applieations. Cargill offers a raricty of wiscosicynowditied oils based on linseed and soybean fils, as well as products in which maleic anhydride or cyclopentadiene hawe beme grafed ontor the lallyarid chain of the oils to enhance reactivity or compatibility in cuatorner formulations, according to Aufdembrink.

BASF'S Soucrmol biobased prolyos are modified isatural oil feedstocks
 Clifford D. seiples techinical sperialist for

> Vegetable will-kased polyols for PI and ailyyd ressin produtimate also seeing exparded use as chemistry adyances are leading to improvements fin performance.

Traneportations: lnclustrial Furniture and Ifour Coatinus, Dispersinith and Resins at ThasF. Tu addicion to othering good pigment metting ehatacteristics, the wan be creselinked with ma wifferent cypes of coring agents and are noere hydruphobic than polyether polyols and Therte resistant to hydrolyais chan prolyestel' polpols. Tho lawi ficcosity of these reneurable poolyols alse enables "tucar-mber wor cout ithes with grod self-leveling proper. ries (in floor coatings fer industrial and institutional applicationcis) and che use al the polyols sus co-binders (e, w, with acrytie polyouls) ta increase the sminds conent of solwenthorme rwo-component polyurethane coaliuge

ATM, meampile, offers methwl
company currently has a partnership with Akzomubel that crables the paint compary to pogressincly increase and trace the use of epoxy resins derived freme Epicorel in ilseodings products.

Tiohased acrylic acia done target building block that hats experienced redmede eforla in recenl years (OPXBio all Bher exiced the marleet Evonik and voromer are pursimpprojects bated an carmon moneide. Riobased srwfene has also not yet been developed. As a resul, fur water-hased acrylic alchiteccural dibpersiontion bobased building block ilternatives are not yet commerexally asailathe Given current raw material prices, Christophe Hemmer, he iad of Mathering Dispersions larsichitentural Contings. Europe from bitst dues not womet economic feasituiliay for roms trajar loulidity blocks within the hext seweral years. BASF
 Gomept con inchease che renewability of mingr of its products. Developed
 replacement of fossil resources with cerifical rococuable materisls (e.g., bon-hamocha or biogas deriwed from urumie waste or yegetable oils) in the stha in crutker to produce renewable basic building bloclis that are identical bothose proclucel fromentule oil and matural gas. These basic products are
used in the company's integrated production (Verbund) system and allocated to respective downstream products, which are also certified. Thus, they contribute to sustainable development by saving fossil resources and reducing greenhouse gas emissions, according to Raupp. For instance, BASF is producing Acronal" binders for interior paints based on this biomass balance concept.

A number of biobased coalescents and solvents with application in the paint and coatings industry are also commercially available today. ADM offers vegetable oil-based, low-VOC coalescents that replace fugitive alcohols for air quality improvement. Oxi-Cure 2000 from Cargill is a coalescent that can be added to reduce VOCs in waterborne formulations. It is not an exempt solvent but a true low-VOC material and is suitable for applications requiring low odor, according to Aufdembrink. Elevance recently launched Unify ${ }^{5} 270$, a coalescing agent for waterborne coatings that offers a lowVOC profile due to improved efficiency in higher coalescent-demanding film applications, according to Pittman. The company also has a number of development projects underway including novel reactive surfactants and zero-VOC coalescing agents.

BioPure ${ }^{7 \mathrm{Ts}} \mathrm{n}$-butanol and acetone solvents are the two primary products

available from Green Biologics. The company is working with an unctisclosed wollabration to produme biohasad isopropry alcohol. In addition: Green Biologics is very actien in collaburations with producers of various Thutyl derivatives, nusomers, and other costings ritw materiats to develog biohaced deriwarives of its alcohols, including 100% biobased butyl and isopropylesers (oullaboration with Ache I [ardesty) hutyl acetate and butyl glycol erhers. and partially
 and butry mediacryate, accordins to Staub, Gitun Bioluyers is the working with Junglounglatele on hinlbased CITROHOL ${ }^{*}$ tributyl citrate and acetyl tributyl cir ate plasiciacis and is separately dereloping dibutyl succinite as a binbuced, luw- ur rot-vot selbert.
"Biofrased materials hare long been used as rator naterials for the coatings industry. Fatty acids, rosims, casherw nut oils, castor wils and watees, cellu-
 mainstays of our formulations for many
 to look at adwances in biotechnology and the utilization of biomass ay part of our efforts to impronci in sustainalifity, ruch as growing the use of dycerol-derived. lower-tisthon-Coul arinil epicthorthytrin in our ероху геsins. In particular, wa
 rials and value chains chat we beliewe have greatest entironmental impact. Гт doing so we have been open to a number of cooperation roodels, but is is clear that huilding new walue chains temands ti me and commitment from all parties, and it is important that we firtat wint-wing forell involved in order to malie bjobaied prod-
 tally sustainable:" he conchudes. 朝

