Coatings Development: Moving to the Fast Track

by Cynthia Challener
JCT CoatingsTech Contributing Writer

The desire to speed up the product development process has always been present in the coatings marketplace. However, the drivers for reducing time-to-market have never been as numerous and the pressure as intense as they are today. Many leading formulators and raw material suppliers have discovered that high throughput experimentation (HTE) techniques can have a measurable impact on the development process, allowing for not only reduced time in the lab, but often creation of higher performing products. High throughput technology, also referred to as high throughput screening and sometimes as combinatorial chemistry, has been widely implemented in the pharmaceutical industry for many years. Catalyst manufacturer firms have been more recent adopters of HTE techniques. Many specialty, consumer, and commodity chemical companies are now benefiting from application of the technology as well. HTE involves the use of robotics to enable parallel screening of very large numbers of micro-sized experiments at the same time, accelerating scientific research. For coatings, the technique can be applied at all stages of the product development process, including initial formulation, application, and performance evaluation.

In fact, the increasing interest in HTE by the coatings industry likely reflects the growing awareness that the technology can be applied to formulation and performance testing, two activities that are critical for coatings research, according to Damian A. Hajduk, vice president of Performance Materials and Formulations for Synsyx Technologies, Inc. Initially, HTE was seen as being useful outside of the pharmaceutical sector for synthesizer-related development work, and the impact for industries such as coatings was limited.

"Coatings manufacturers aren’t just selling chemicals. They are selling performance, and this performance can be difficult to predict from chemical composition alone. For coatings, then, synthesis is only the first step," Hajduk explains. "Any newly synthesized resin often has to be formulated into a model coating, applied to a surface, cured, and tested across multiple performance dimensions before its value can be estimated. With the recent advances in HTE capabilities, it is now possible to synthesize resins, formulate them into coatings, apply them to several different substrates, and measure properties such as flexural modulus, glass transition temperature, and chemical resistance at rates of 400-500 formulations per week.

A couple of years ago, researchers from industrial labs were somewhat skeptical regarding HTE techniques, but this attitude has disappeared over the years and we are now seeing HTE adoption by leading performance materials companies," notes Dr. Philipp Hauck, business development manager with HTE AG.

Not only has the technology improved substantially, but the sector has become much more receptive as well. "Another important key driver has been changing environmental regulations, leading to a shift away from waterborne, high solids, and energy cured coating formulations which require extensive testing to demonstrate the performance and benefits of new compounds," Hauck adds. HTE helps the industry shorten the development cycle and can fulfill this task in time to meet legislation deadlines.

The primary reason for investing in high throughput capabilities, though, is the growing realization that HTE has an economic benefit, according to Sarah Ecklesley, technology director and head of coatings HTE for Dow Chemical. "It enables faster speed-to-market and higher performing, more novel solutions," she states.

High throughput equipment suppliers are offering new capability specific to coatings preparation, application, and testing, while major raw material suppliers are finding that HTE allows them to develop a much richer understanding of how their products can contribute to enhanced performance. "One of the main reasons for the increased amount of interest is the effectiveness of the technology," affirms Abdullah Ekin, Ph.D., head of High Throughput Testing at Bayer MaterialsScience LLC. "Companies that have HTE have a significant competitive advantage due to realizing faster development." He notes that the interest level in Europe seems to have grown more rapidly than it has in North America.

This advantage can be gained in many different ways. One of the most common applications for HTE is screening a wide variety of resin families and types for a specific application, which serves as a basis for where to start to formulate, according to Ekin. Another is optimization of a coating by changing different parameters within the formulation. Most agree, though, that high throughput techniques are not very well suited for finetuning of coating formulations or optimization of a final resin formulation.

Coatings formulators are faced with the task of optimizing a very large number of chemical compositions and process conditions. In the majority of cases, these factors are strongly interdependent and therefore have to be investigated in a non-decoupled way. "The main advantage of a well thought out HTE concept is the complete workflow and data integration including Design of Experiment (DoE), formulation, application, and characterization. Therefore, HTE techniques enable better understanding of formulation-substrate interaction and are much more than an increase in the number of experiments," Hauck comments.

The results can be dramatic. "What previously took years, now takes months; and what took months, now takes weeks," Hajduk says.

www.coatingstech.org
Coatings Development: Moving to the Fast Track

by Cynthia Challenger
JCT CoatingsTech Contributing Writer

The desire to speed up the product development process has always been present in the coatings marketplace. However, the drivers for reducing time-to-market have never been as numerous and the pressure as intense as they are today. Many leading formulators and raw material suppliers have discovered that high throughput experimentation (HTE) techniques can have a measurable impact on the development process, allowing for not only reduced time in the lab, but often creation of higher performing products.

High throughput technology, also referred to as high throughput screening and sometimes as combinatorial chemistry, has been widely implemented in the pharmaceutical industry for many years. Catalyst manufacturers have been more recent adopters of HTE techniques. Many specialty, consumer, and commodity chemical companies are now benefiting from application of the technology as well.

HTE involves the use of robotics to enable parallel screening of very large numbers of micro-sized experiments at the same time, accelerating scientific research. For coatings, the technique can be applied at all stages of the product development process, including initial formulation, application, and performance evaluation.

In fact, the increasing interest in HTE by the coatings industry likely reflects the growing awareness that the technology can be applied to formulation and performance testing, two activities that are critical for coatings research, according to Damian A. Hajduk, vice president of Performance Materials and Formulations for Synex Technologies, Inc. Initially, HTE was seen as being useful outside of the pharmaceutical sector for synthesis-related development work, and the impact for industries such as coatings was limited.

"Coatings manufacturers aren't just selling chemicals. They are selling performance, and this performance can be difficult to predict from chemical composition alone. For coatings, then, synthesis is only the first step."

Hajduk explains. "Any newly synthesized resin often has to be formulated into a model coating, applied to a surface, cured, and tested across multiple performance dimensions before its value can be estimated.

With the recent advances in HTE capabilities, it is now possible to synthesize resins, formulate them into coatings, apply them to several different substrates, and measure properties such as flexural modulus, glass transition temperature, and chemical resistance at rates of 400-500 formulations per week."

"A couple of years ago, researchers from industrial labs were somewhat skeptical regarding HTE techniques, but this attitude has disappeared over the years and we are now seeing HTE adoption by leading performance materials companies," notes Dr. Philipp Hauck, business development manager with HTE AG.

Not only has the technology improved significantly, but the sector has become much more receptive as well. "Another important key driver has been changing environmental regulations, leading to a shift away from waterborne, high solids, and energy cured coating formulations which require extensive testing to demonstrate the performance and benefits of new compounds," Hauck adds. HTE helps the industry shorten the development cycle and can fulfill this task in time to meet legislation deadlines.

The primary reason for investing in high throughput capabilities, though, is the growing realization that HTE has an economic benefit, according to Sarah Ecklesley, technology director and head of coatings HTE for Dow Chemical. "It enables faster speed-to-market and higher performing, more novel solutions," she states.

High throughput equipment suppliers are offering new capability specific to coatings preparation, application, and testing, while material suppliers are finding that HTE allows them to develop a much richer understanding of how their products can contribute to enhanced performance.

"One of the main reasons for the increased amount of interest in the effectiveness of the technology," affirms Abdullah Ekin, Ph.D., head of High Throughput Testing at Bayer MaterialScience LLC. "Companies that have HTE have a significant competitive advantage due to realizing faster development." He notes that the interest level in Europe seems to have grown more rapidly than it has in North America.

This advantage can be gained in many different ways. One of the most common applications for HTE is screening a wide variety of resin families and types for a specific application, which serves as a basis for where to start to formulate, according to Ekin. Another is optimization of a coating by changing different parameters within the formulation.

Most agree, though, that high throughput techniques are not very well suited for finetuning of coating formulations or optimization of a final resin formulation.

Coatings formulators are faced with the task of optimizing a very large number of chemical compositions and process conditions. In the majority of cases, these factors are strongly interdependent and therefore have to be investigated in a non-decoupled way. "The main advantage of a well thought out HTE concept is the complete workflow and data integration including Design of Experiment (DoE), formulation, application, and characterization. Therefore, HTE techniques enable better understanding of formulation-substrate interaction and are much more than an increase in the number of experiments," Hauck comments.

The results can be dramatic. "What previously took years, now takes months; and what took months, now takes weeks," Hajduk says.

www.coatingstech.org
states. Turnaround times improve, and the number of projects a team can take on in a given year increase. Some companies, he says, have used this to conduct more thorough research, identifying the best performing formulations for commercialization and patenting while leaving areas of weaker performance for their competitors.

Others have used it to increase the number of projects a team can take on in a given year.

HITE also lets manufacturers invest their research budgets efficiently. "The expansion of HITE into physical testing lets researchers estimate the performance of every formulation at an early stage in the research," explains Hajduk. Large quantities of material, often requiring scaling, are no longer required before these properties can be measured. Teams can therefore identify promising directions at an early stage and focus their efforts there. Less promising research directions can be identified quickly, and the time spent on them can be minimized.

Formulation development using high-throughput technology is an area receiving a lot of attention in the coatings sector. "HITE is particularly well suited for solving problems with multi-component formulations where there may be synergistic or antagonistic interactions between components," remarks Hajduk. And the greater the number of formulations to be explored, the greater the advantage of HITE.

"Formulations represent a huge challenge for the researcher," agrees Nick Gruber, who is responsible for Global Strategic Management of Resins with BASF AG. "Numerous different ingredients, varying in type and concentration, have to be handled; structure-property relationships are hard to predict; and the variation of chemical composition and process conditions is almost infinite. In this field, HITE methods are a powerful tool for increasing the efficiency and effectiveness of R&D."

The advantages of high-throughput technology are not realized, though, by simply running a lot of experiments in parallel on robotic systems. "The sheer amount of experiments that can be done will not lead per se to a better understanding and faster result," notes Hauck. HITE is only effective if the search is narrowed down to relevant materials or processes to be tested early on in the research process. Therefore, the Design of Experiment stage is critical in determining the successful application of any HITE program.

HITE equipment maintenance requires unique skills as well. "Dedicated personnel with the requisite expertise are needed to fully capitalize on the potential of the investment, which can be significant," says Eckersley. "The most important thing to consider is ensuring the right level of people will be able to understand and use the equipment. This includes expertise in software and hardware as well as knowledge of designing and executing large experimental designs, and typically involves a scientist, chemist, techni-

"Knowledge is the key to managing the large quantities of data that are produced and be able to convert this data into useful information. This is especially important. In order to tap the full potential of the powerful HITE techniques, a fast evaluation of the huge data sets is necessary. The combination of structure-property relations is absolutely essential," asserts Gruber.

Data management systems with graphic display of the results offer good solutions, but there is still room for improvement. "The bottleneck is no longer execution of experiments but processing and intelligent interpretation of the data," adds Hauck. Gruber further believes that, "Only if this challenge is tackled successfully with HITE techniques really make a contribution to increasing the efficiency of R&D."

Dow Chemical's coatings business, which has partnered with Symyx on its HITE activities, has invested in an integrated set of robotic instruments and modeling and data management software that can be used to formulate coating compositions, create coatings on a variety of substrates, and analyze both liquid formulations and coating samples for several key properties. Facilities have been implemented in Dow's new coatings R&D labs in Midland, MI, and Shanghai, China.

"Dow has made a substantial and strategic investment in HITE as a transformational way of doing R&D. We use HITE throughout our product development process from early stage research through designing specific formulations with optimized performance," Eckersley notes. In all cases, the company chooses to use the HITE approach when it makes technical sense and will result in new value.

"Using HITE, we are changing the way we develop new products and explore new solutions with our customers," explains Wendy Hoening, global R&D director for Dow's coatings business. "Through new polymer development and formulation laboratory studies, we are working on innovative solutions that meet historic and emerging industry needs with chemistries we would not have considered before. Current projects include enabling new environmental or 'green' coating formulations, enhanced environmental durability, reduced application and formulation costs, smart coatings, and others."

With its HITE capabilities, Dow optimizes coating performance by selecting and evaluating new and intelligent and intelligent choice of ingredients that occur between the numerous different ingredients. For example, Dow recently conducted a series of experiments using HITE targeted towards low VOC and low odor results in an architectural paint. In just 11 weeks, 1,500 end-use performance tests on 288 paint formulations were completed.

"We found a formulation region of low odor and low VOC that had significantly better performance than the commercial paints on the market," Eckersley notes. "HITE allowed us to probe regions of the formulation space that would never have been tried using a traditional ladder approach."

In addition to development of water-based coatings, HITE is also well suited for coating application processes for UV-cured lacquers, according to Hauck. HITE can simulate coil coating processes for UV or IR curing or dual curing, and short to ultra-short exposure experiments can be run that would not be achieved manually.

Exact reproducible timing is something automated systems are especially good at," Hauck says. "There is a range of different HITE coating technologies that are well developed and reliably reproduce the corresponding manual laboratory procedures. They even excel, with higher reproducibility and higher integrity compared to the standard manual operations."

Abdallah Ekin also stresses that making assumptions about correlations between conventional methods and high throughput methods must be avoided. "Before a new method is generated using HITE, feasibility studies need to be done to confirm the correlation between conventional methods and high throughput methods."

Many HITE approaches simplify existing practices in order to achieve high throughput, but such simplifications can inadvertently eliminate key steps needed for meaningful results. One good example, according to Hajduk, is the use of drawdowns for sample creation. Most measurements of interest are performed on drawdowns, but there are others, such as surface finish measurements, in which specific deposition methods and equipment are used in order to obtain results representative of the real application.

"When setting up HITE programs, it is always wise to check the extent to which HITE results on 'known' samples correlate with 'known' results—and if the correlation is weaker than expected, consider whether key steps of conventional practice have been changed or eliminated," Hajduk emphasizes. It is essential, Gruber adds, when employing high throughput methods, "to formulate, apply onto substrates, and characterize coatings in a manner as close to reality as possible in order to guarantee the transferability of the results for practical purposes."

It is also important to realize that high throughput techniques cannot
its impact on performance is hard to predict. HITE also allows manufacturers to identify what each ingredient in a formulation contributes to performance, and the level at which this performance is optimized. The use of expensive ingredients can be reduced to the level that yields the desired performance, and additives that contribute little or nothing to the coating can be eliminated.

Other typical development problems where HITE offers significant support for R&D are compatibility studies; the influence of process parameters such as curing time or energy on coating properties; development of new color shades by formulation; and adjustment of additive packages to resist and vice versa, according to Gruber. From a coating technology point of view, there are, in principle, no limitations. Radiation-curable coatings can be tested in an HITE setup as well as with conventional coatings. Both 1K and 2K formulations with a potlife can also be studied, but for 2K systems, timing of work flow is essential because of viscosity issues. Our experience has shown, though, that this challenge can be realized in fully computerized automated robotic systems.

The advantages of high-throughput technology are not realized, though, by simply running a lot of experiments in parallel on robotic systems. The sheer amount of experiments that can be done will not lead per se to a better understanding and faster result,” notes Hauck. HITE is only effective if the search is narrowed down to relevant material processes to be tested early on in the research process. Therefore, the Design of Experiment stage is critical in determining the successful application of any HITE program. HITE equipment maintenance requires unique skills as well. “Dedicated personnel with the requisite expertise are needed to fully capitalize on the potential of the in-

vvestment, which can be significant,” says Eckersley. “The most important thing to consider is using the right people. They will be able to understand and use the equipment. This includes expertise in software and hardware. Knowledge of designing and executing large experimental designs, and typically involves a scientist, chemist, technician, and engineer.”

Knowing how to manage the large quantities of data that are produced and be able to convert that data into useful information is also important. “In order to tap the full potential of the powerful HITE techniques, a fast evaluation of the huge data sets as an obvious conclusion of structure-property relations is absolutely essential,” asserts Gruber.

Data management systems with graphical display of the results offer good solutions, but there is still room for improvement. “The bottleneck is no longer execution of the experiments but the complex interpretation of the data,” adds Hauck. Gruber further believes that, “Only if this challenge is tackled successfully will HITE techniques really make a contribution to increasing the efficiency of R&D.”

Dow Chemical’s coatings business, which has partnered with Symyx on its HITE activities, has invested in an integrated set of robotic instruments and modeling and data management software that can be used to formulate coating compositions, create coatings on a variety of substrates, and analyze both liquid formulations and coating samples for several key properties. Facilities have been implemented in Dow’s new coatings R&D labs in Midland, MI, and Shanghai, China.

“Dow has made a substantial and strategic investment in HITE as a transformational way of doing R&D. We use HITE throughout our product development process to take a data-driven approach from early stage research through designing specific formulations with optimized performance,” Eckersley notes. In all cases, the company chooses to use the HITE approach when it makes technical sense and will result in new value.

“Using HITE technology, we are changing the way we develop new products and explore new solutions with our customers,” explains Wendy Hoensig, global R&D director for Dow’s coatings business. “Through new polymer development and formulation latitude studies, we are working on innovative solutions that meet historic and emerging industry needs with chemistries we would not have considered before. Current projects include enabling new environmental or ‘green’ coating formulations, enhanced environmental durability, reduced application and formulation costs, smart coatings, and others.”

With its HITE capabilities, Dow optimizes coating performance by implementing the complex relationships that occur between the numerous different ingredients. For example, Dow recently submitted a series of experiments using HITE targeted towards low VOC and low odor results in an architectural paint. In just 11 weeks, 15,000 end-use performance tests on 288 paint formulations were completed.

“We found a formulation region of low odor and low VOC that had significantly better performance than the commercial paints on the market,” Eckersley notes. “HITE allowed us to probe regions of the formulation space that would never have been tried using a traditional trial-and-error approach.”

In addition to development of water-based coatings, HITE is also well suited for coating application processes for UV-cured lacquers, according to Hauck. HITE can simulate coil coating processes for UV or IR curing or dual curing, and short to ultra-short exposition experiments can be run that would not be achieved manually.

“Exact reproducible timing is something automated systems are especially good at,” Hauck says. “There is a range of different HITE coating technologies that are well developed and reliably reproduce the corresponding manual labora-

tory procedures. They even excel, with higher reproducibility and higher integrity compared to the standard manual operations.”

Abdallah Ekin also stresses that making assumptions about correlations between conventional methods and high-throughput methods must be avoided. “Before a new method is generated using HITE, feasibility studies need to be done to confirm the correlation between conventional methods and high-throughput methods.”

Many HITE approaches simply existing practices in order to achieve high throughput, but such simplifications can inadvertently eliminate key steps needed for meaningful results. One good example, according to Hajduk, is the use of drawdowns for sample creation. Most measurements of interest are performed on drawdowns, but there are others, such as surface finish measurements, in which specific deposition methods are used. These methods are used in order to obtain results representa-

tive of the real application.

“When setting up HITE programs, it is always wise to check the extent to which HITE results on ‘known’ samples correlate with ‘known’ results—and if the correlation is weaker than expected, consider whether key steps of conventional practice have been changed or eliminated,” Hajduk emphasizes. “It is essential. Guenther adds, when employing high throughput methods, ‘to formulate, apply onto sub-

strates, and characterize coatings in a manner as close to reality as possible in order to guarantee the transferability of the results for practical purposes.’”

It is also important to realize that high throughput techniques cannot
practically replace all development efforts. For example, large-scale performance tests (such as ASTM tests) that are expected by customers take a considerable amount of time and resources to perform, but automating such tests at the relevant scale would require a very high level of investment.

Symyx looks not to replace large-scale performance tests, but to restrict them to coatings most likely to succeed, according to Hajduk. High throughput physical testing is used to measure combinations of fundamental physical properties that are thought to underlie the properties measured in typical large-scale performance tests. For example, glass transition temperature measurements could be used to estimate performance on a softening temperature test, or surface friction measurements in the presence of different solvents could be used to assess chemical resistance of a cured coating.

Coatings that show acceptable performance in the high throughput tests are then scaled up and sent through the battery of large-scale tests that manufacturers use today. Now, which follows this strategy, uses scheduling and logistics to keep output maximized when the time duration of different tests does not perfectly align.

Bayer uses HTE for many internal applications such as catalyst screening for a new chemistry or resin, optimization of different parameters in a coating formulation, and understanding of raw material properties and the performance of materials in different types of formulations, according to Ekin. High throughput is also a very important customer service offering for the company. "We use HTE to help our customers solve problems, particularly when time is of the essence. And we also use it for our potential customers' needs to show feasibility for a project," he explains.

It is large companies like Dow, Bayer MaterialScience, and BASF that are implementing R&D strategies that increasingly rely on high throughput methods. "The best fit and highest added value of applying HTE techniques is with companies employing clearly defined long-term development objectives," notes Hauck.

Smaller companies are also hesitant to adopt the technology because of the high initial investment, HTE centers like the Flanders Material Centre in Belgium—which has installed equipment and software for coatings development—or other institutes, could serve as places where HTE technology is accessible on a R&D service basis, Hauck believes.

"The coatings industry is still in the early adoption phase with regard to HTE. Major raw material suppliers and larger coatings companies are leading the way, often conducting joint projects to explore the potential of this new technology," states Eckenley. "Interest will continue to grow as economic and technical value is demonstrated on one project at a time."

Just in the past 5-10 years, according to Ekin, many questions about the value of HTE technology for coatings formulation development have been addressed by different instrument suppliers. Also, there are many more companies who are supplying instruments and introducing new capabilities compared to five years ago. "The increasing availability of new equipment will further interest in both the short and longer term," he notes.

As high throughput techniques are more widely used, shorter time-to-market for novel raw materials and formulations will be realized. "Eventually, HTE techniques will make it possible for companies to react immediately to customer requests and offer highly targeted solutions," says Gruber.

The ability to explore complex formulation spaces efficiently will continue to make HTE attractive to the coatings industry, according to Hajduk. "As more and more measurements become available in high throughput form, the value of this approach will only increase," he says. Hauck points to future developments such as laboratory devices for characterization that are more suitable for integration into automated workflows, centralized data acquisition, and processing and improved informatics tools for more sophisticated visualization and data mining.

"We must always recognize that HTE supports but does not substitute classical optimization in the lab," asserts Gruber. "Keeping that in mind, I firmly believe that high throughput techniques, which are already increasing the efficiency of the coatings development today, will see even wider use in the future."