Surface Mold Prevention with Chlorothalonil/Disodium Octaborate Tetrahydrate Systems

by Joseph W. Burley
Soratom Corporation

A laboratory study has confirmed the merits of typically applied chlorothalonil and chlorothalonil/disodium octaborate tetrahydrate combination systems for the prevention of fungal growth on wood and gypsum drywall substrates. This article describes the extension of this work to a field study performed on construction lumber under harsh climatic conditions (southern Florida), highly favorable to mold growth. This more realistic study also confirmed the effectiveness of chlorothalonil-based systems in prevention of surface infestation by mold fungi. The practical application of these systems for mold prevention in new home construction is discussed.

INTRODUCTION

Mold prevention in new homes and remediation of mold in storm-damaged properties are both contributing to a growing market in this area of pest control. Many factors in new home construction, including poor building practices (leaks), use of synthetic stucco (does not breathe), longer construction times (larger homes), and efforts for higher energy efficiency contribute to the increased incidence of mold. Changes in lifestyle (longer time spent indoors) also contribute to higher moisture levels favorable to mold infestation. Normal weather extremes linked with the increased utilization of indoor climate control, and the longer-term cyclical changes in climatic conditions currently giving rise to increased hurricane incidence, are also significant contributors to mold infestations in habitable structures.

Many chemical treatments have emerged for mold prevention and remediation but the number of truly effective materials is limited. The first step in providing proven products for mold prevention and remediation is normally a preliminary laboratory study that screens and compares likely candidates for efficacy against known mold-forming fungi. Such a study in surface mold control was recently completed and reported by Lloyd, Micales-Glaser, and Woods. This study constituted tests performed in vitro on wood (southern yellow pine and aspen) and gypsum wallboard with four mold fungi commonly encountered in human habitats. The active ingredients compared in the fungalicidal treatments were chlorothalonil (CTL), dibenzyl dimethyl ammonium chloride (DDAC), and disodium octaborate tetrahydrate (DOT). Combination systems based on DOT with the other two active substances were also included in this study. This was a comprehensive study, the results of which were presented at the Ljubljana IFRG meeting in 2004. In summary, the data obtained clearly demonstrated that the most effective fungicide, when used alone, was CTL.

Combinations of CTL with DOT also performed more effectively than the DOT/DDAC combinations but the difference in efficacy for the combined systems was rather small. Some of the results from this study obtained on southern yellow pine (SYP) are presented here for direct reference.

To increase the level of confidence in CTL-based systems for mold prevention, studies were extended to a full-scale field trial performed under harsh climatic conditions. This study was performed on bundles of construction lumber stored under tarpsauls in southern Florida. Intermittent examination of the exposed lumber stacks indicated that significant differentiation of fungicidal treatments could be observed in a relatively short period of time (three months).

EXPERIMENTAL

Materials

CHEMICALS: disodium octaborate tetrahydrate was provided by Nisus Corporation in the form of a 40.6% active solution in glycols. Chlorothalonil was employed as a 40.4% active water-based suspension concentrate (Soratom Corporation) and dibenzyl dimethyl ammonium chloride was employed in the form of an 80% active aqueous solution and was supplied by the original study co-sponsor, Nisus Corporation.

Table 1—Fungicidal Treatments—In vitro Study

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Fungicidal Treatment</th>
<th>Concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Chlorothalonil (CTL)</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>Dibenzyl dimethyl ammonium chloride (DDAC)</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>Disodium octaborate tetrahydrate (DOT)</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>0.01/DDAC</td>
<td>8.5/1.0</td>
</tr>
<tr>
<td>6</td>
<td>0.01/CTL</td>
<td>8.5/1.0</td>
</tr>
</tbody>
</table>

Petri Dish Study

A complete description of the method employed in the in-vitro study is given in reference 1 and will not be detailed here.

Standard microbiological Petri-dish techniques were employed for determining the effectiveness of each treatment against mold fungi in axenic culture. The mold fungus evaluated were: Stachybotrys chartarum, Aspergillus Niger, Penicillium brevicompactum, and Cladosporium cladosporioides. In all, 16 single active and combination active fungicidal treatment systems were evaluated including some evaluations at multiple levels. Test substrates were southern yellow pine, aspen, and boron-free gypsum wallboard. Samples were rated at intervals up to a total of 1.2 weeks for macroscopic discoloration and microscopic sporulation and mycelial growth. A modified version of ASTM D 3274-95 was employed with all properties being rated on a scale of 0-3. In all cases a higher rating corresponds with lower efficacy of the fungicidal treatment to control the respective deterioration.

Select fungicidal systems from the above study are reported here (Table 1) for comparison with the field study, which is the main object of this paper.

Field Study

TEST SPECIMEN: 2" x 4" x 8" pieces of kiln-dried SYP construction lumber were selected as test specimens for the field trial. Four full bundles (A, B, C, D—approximately 190 pieces in each bundle) of each treatment were prepared.
Surface Mold Prevention with Chlorothalonil/Disodium Octaborate Tetrahydrate Systems

by Joseph W. Burley
Sotram Corporation*

A laboratory study has confirmed the merits of typically applied chlo-rothalonil and chlorothalonil/disodium octaborate tetrahydrate combination systems for the prevention of fungal growth on wood (and gypsum drywall) substrates. This article describes the extension of this work to a field study performed on construction lumber under harsh climatic conditions (southern Florida), highly favorable to mold growth. This more realistic study also confirmed the effectiveness of chlorothalonil-based systems in prevention of surface infestation by mold fungi. The practical application of these systems for mold prevention in new home construction is discussed.

INTRODUCTION

Mold prevention in new homes and remediation of mold in storm-damaged properties are both contributing to a growing market in this area of pest control. Many factors in new home construction, including poor building practices (leaks), use of synthetic stucco (does not breathe), longer construction times (larger homes), and efforts for higher energy efficiency contribute to the increased incidence of mold. Changes in life style (longer time spent indoors) also contribute to higher moisture levels favoring mold infestation. Normal weather extremes linked with the increased utilization of indoor climate control, and the longer-term cyclical changes in climatic conditions currently giving rise to increased hurricane incidence, are also significant contributors to mold infestations in habitable structures.

Many chemical treatments have emerged for mold prevention and remediation but the number of truly effective materials is limited. The first step in providing proven products for mold prevention and remediation is normally a preliminary laboratory study that screens and compares likely candidates for efficacy against known mold-forming fungi. Such a study in surface mold control was recently completed and reported by Lloyd, Micales-Glaser, and Woods. This study constituted tests performed in vitro on wood (southern yellow pine and aspen) and gypsum wallboard with four mold fungi commonly encountered in human habitats. The active ingredients compared in the fungicidal treatments were chlorothalonil (CTL), dieldrin dimethyl ammonium chloride (DDAC), and disodium octaborate tetrahydrate (DOT). Combination systems based on DOT with the other two active substances were also included in this study. This was a comprehensive study, the results of which were presented at the Ljubljana ICRG meeting in 2004. In summary, the data obtained clearly demonstrated that the most effective fungicide, when used alone, was CTL.

Combinations of CTL with DOT also performed more effectively than the DOT/DDAC combinations but the difference in efficacy for the combined systems was rather small. Some of the results from this study obtained on southern yellow pine (SYP) are presented here for direct reference.

To increase the level of confidence in CTL-based systems for mold prevention, studies were extended to a full-scale field trial performed under harsh climatic conditions. This study was performed on bundles of construction lumber stored under tarps in southern Florida. Intermittent examination of the exposed lumber stacks indicated that significant differentiation of fungicidal treatments could be observed in a relatively short period of time (three months).

EXPERIMENTAL

Materials

CHLORINE: disodium octaborate tetrahydrate was provided by Nisus Corporation in the form of a 40.0% active solution in glacial. Chlorothalonil was employed as a 40.4% active water-based suspension concentrate (Sotram Corporation) and dieldrin dimethyl ammonium chloride was employed in the form of an 80% active aqueous solution and was supplied by the original study co-sponsor, Nisus Corporation.

www.coatingstech.org

Table 1—Fungicidal Treatments—In-Vitro Study

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Fungicidal Treatment</th>
<th>Concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Chlorothalonil (CTL)</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>Dieldrin dimethyl ammonium chloride (DDAC)</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>Disodium octaborate tetrahydrate (DOT)</td>
<td>8.5/3.0</td>
</tr>
<tr>
<td>5</td>
<td>DOT/DDAC</td>
<td>8.5/3.0</td>
</tr>
<tr>
<td>6</td>
<td>DOT/CTL</td>
<td>8.5/3.0</td>
</tr>
</tbody>
</table>

Petri Dish Study

A complete description of the method employed in the in-vitro study is given in reference 1 and will not be detailed here.

Standard microbiological Petri-dish techniques were employed for determining the effectiveness of each treatment against mold fungi in axenic culture. The mold fungi evaluated were: Stachybotrys chartarum, Aspergillus niger, Penicillium brevicompactum, and Cladosporium cladosporioides. In all, 16 single active and combination active fungicidal treatment systems were evaluated including some evaluations at multiple levels. Test substrates were southern yellow pine, aspen, and boron-free gypsum wallboard. Samples were rated at intervals up to a total of 1.2 weeks for macroscopic discoloration and microscopic sporulation and mycelial growth. A modified version of ASTM D 3274-95 was employed with all properties being rated on a scale of 0–3. In all cases a higher rating corresponds with lower efficacy of the fungicidal treatment to control the respective deterioration.

Select fungicidal systems from the above study are reported here (Table 1) for comparison with the field study, which is the main object of this paper.

Field Study

TEST SPECIMEN: 2" x 4" x 8" pieces of kiln-dried SYP construction lumber were selected as test specimens for the field trial. Four full bundles (A, B, C, D—approximately 190 pieces in each bundle) of each treatment were prepared.

Table 2—Fungicidal Treatments—Field Study

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Fungicidal Treatment</th>
<th>Concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1F</td>
<td>(A,B,C,D)</td>
<td>Water control</td>
</tr>
<tr>
<td>2F</td>
<td>(A,B,C,D)</td>
<td>DOT/DDAC</td>
</tr>
<tr>
<td>3F</td>
<td>(A,B,C,D)</td>
<td>DOT/CTL</td>
</tr>
</tbody>
</table>

*300 Colonial Pkwy., Ste. 230, Roswell, GA 30076.

*Based in part on a poster presented at Wood Protection 2006, March 21-23, 2006, in New Orleans, LA.

JCT Coatingstech Feb 2008
Fungicidal Treatments

In addition to water-treated control specimens the fungicidal treatment systems were selected as the three best systems from the laboratory study identified above. Table 2 lists the fungicidal treatments undertaken for the field study.

Treatment Procedure

The construction lumber bundles were split and ea-oh piece of lumber was individually treated by flood-coating (a high volume, low pressure spray technique). This was followed by air-knead drying prior to reconstruc-
tion of the lumber bundles. The treatments were per-
formed at the establishment of Truad Pre-finish and Lumber Sales Inc., Greensboro, NC. Reconstituted bun-
dles were re-stacked and shipped to the Atlanta test site in southern Florida for exposure and evaluation. At the time of shipment, only the treating facility was aware of the identity of the treated bundles. Any downstream

evaluation of these specimens was, therefore, per-
formed on a totally unbiased "blind" basis.

Specimen Exposure

The bundles were arranged randomly on the test site and were covered by tarpaulins in order to conserve moisture within the bundle and create an aggressive environment with regards to mold growth. The tarpau-
lins were removed in order to subject the bundles to any natural rainfall that occurred. When natural rain-
fall was absent for more than one week the bundles

were watered artificially on a weekly basis. The wet bundles were re-tarped after natural rainfall or water-
ing. The test was initiated in mid-January 2005 and ter-
mìnated in early April 2005.

Evaluation

Bundles were evaluated on an intermittent basis for
development of surface mold. When mold had de-
veloped sufficiently to differentiate the treated specimens, a comprehensive assessment was performed. This con-
stituted a piece-by-piece evaluation and allocation of a
rating based on the percentage of clean wood present on the worst of the two broad faces of each piece. This involved the evaluation of some 1500 wood surfaces for any given treatment type and was performed by Prof. Terry Amburgey of FASIPRO Inc. Only the inci-
dence of mold growth was rated, not the severity. Even if a lumber surface was lightly covered with mold and this covered the whole surface, a 0% clean rating was assigned. Additionally, photographic documentation of the partially disassembled wood bundles was performed.

RESULTS AND DISCUSSION

Laboratory Study

Data extracted from the laboratory study have been used to construct Figures 1-4 for the four microorgan-
isms listed above on southern yellow pine [30]. These figures illustrate the efficacy of the individual active in-
gredients and combination systems for a limited num-
ber of the samples evaluated in the original study. Table 3 outlines the systems for which data are presented.

The results of this study are reported in detail in Lloyd et al. This study concluded that the best overall ef-
cacy of the single active ingredient fungicidal treat-
ments is observed with CTL. This is consistent with the findings of Staphylococcus, the single most effec-
tive of the DDAC/DOT system is limited to Cladosporium cladosporioides. The above observations re-

erate the efficacy of DOT alone are consistent with the results of Lloyd et al. However, the combination of

DOT/DDAC treatment was only marginally effective at controlling mold fungi, and the observations of Clausen and West, who found that DOT treatments did treat with a solution contain-
ing 15% DOT were not resistant to Apergillus niger in a standard laboratory mold test, but only when the

specimens were kill-dried prior to fungicidal treat-

ment.

Field Study

Based on the observations from the in-vitro study, the three fungicidal treatments with the best efficacy
(Table 2) were chosen as the basis of a field study in southern California. Southern yellow pine was used as the test substrate and full bundles of construction lum-
ber were utilized. The test was designed to give a "worst case" study consistent with the ambient temperatures and humidity and conducive to surface mold growth. In ad-

dition, moisture levels in/on the test specimens were maintained by enclosure in tarpaulins. This protocol also ensured little air movement around the wood bun-
dles, further enhancing the potential for mold growth.

The field test was initiated in mid-January 2005. Early inspections indicated relatively little mold growth attrib-
utable to the initial dryness of the test specimens and the lack of natural rainfall. It was then decided that artificial watering would be required on a weekly basis if no natur-
ral rainfall occurred. This practice was successful in in-
ducing mold growth and by early April 2005 sufficient differences in surface mold were evident such that an ob-
jective assessment of these differences could be made.

No attempt was made to identify the mold species, al-
though both Trichoderma spp. and Penicillium spp. ap-

erared to be the predominant species. The wood bun-
dles were split to approximately half the depth and differences were recorded by photography. The black and white versions of these colored photographs are not suit-
able for reproduction here but the following order of ef-
cacy, DOT/CTL=DOT/DDAC-control (water), was appar-
ent. A more objective assessment of performance was obtained by a detailed inspection of the two broad faces of every piece of lumber that received treatment. In all, some 6000 (1500 per treatment type) individual as-

cessments were performed. This procedure is described in the experimental section and resulted in approxi-

mately 750 pieces of data per treatment type. These data are not presented here but several statistical assessments of these data were performed and are presented in

Figures 5-7. Figure 5 illustrates the effect of fungicidal treatment upon the mean percentage of surface area free of mold after approximately 90 days of exposure. In comparison to the water-treated control, CTL gave a significant pos-
itive effect on the mean percentage of surface area free of mold while the combination of CTL with DOT gave even more positive results. The combina-
tion of DOT with DDAC had apparently little effect on the proportion of surface area free of mold.

An alternative statistical view of the data, presented in

Figure 6 (median value of percentage surface area free of mold), suggests a similar relative order of perform-
ance for the CTL and CTL/DDOT systems but a greater differentiation between these systems and the DOT/DDAC system and control. There is some indication from the data presented in Figures 5 and 6 that the DOT/DDAC system performs somewhat worse than the control but this is likely of little statisti-
cal significance. A final perspective on this data is pre-

sented in Figure 7, which shows the effect of treatment type upon the relative incidence of perfectly clean boards at the end of the exposure period. Again the same conclusion is reached with regards to relative effi-
cacy.

Independent of the statistical representation of the acquired data, it is clear that the field results for the
Fungicidal Treatments

In addition to water-treated control specimens the fungicidal treatment systems were selected as the three best systems from the laboratory study identified above. Table 2 lists the fungicidal treatments undertaken for the field study.

Treatment Procedure

The construction lumber bundles were split and ea-eh piece of lumber was individually treated by flood-coating a high volume, low pressure spray technique. This was followed by air-kite drying prior to reconstituation of the lumber bundles. The treatments were performed at the establishment of Trid Pre-finish and Lumber Sales Inc. Greensboro, NC. Reconstituted bundles were re-strapped and shipped to the Atlas test site in southern Florida for exposure and evaluation. At the time of shipment, only the treating facility was aware of the identity of the treated bundles. Any downstream evaluation of these specimens was therefore performed on a totally unbiased “blind” basis.

Specimen Exposure

The bundles were arranged randomly on the test site and were covered by tarpaulins in order to conserve moisture within the bundles and create an aggressive environment with regards to mold growth. The tarpaulins were removed in order to subject the bundles to any natural rainfall that occurred. When natural rainfall was absent for more than one week the bundles were watered artificially on a weekly basis. The wet bundles were re-tarped after natural rainfall or watering. The test was initiated in mid-January 2005 and terminated in early April 2005.

Evaluation

Bundles were evaluated on an intermittent basis for development of surface mold. When mold had developed sufficiently to differentiate the treated specimens, a comprehensive assessment was performed. This consisted of a piece-by-piece evaluation and allocation of a rating based on the percentage of clean wood present on the worst of the two broad faces of each piece. This involved the evaluation of some 1500 wood surfaces for any given treatment type and was performed by Prof. Terry Amburgey of TASKpro Inc. Only the incidence of mold growth was rated, not the severity. Even if a lumber surface was lightly covered with mold and this covered the whole surface, a 0% clean rating was assigned. Additionally, photographic documentation of the partially discolored wood bundles was performed.

RESULTS AND DISCUSSION

Laboratory Study

Data extracted from the laboratory study have been used to construct Figures 1-4 for the four microorganisms listed above on southern yellow pine [397]. These figures illustrate the efficacy of the individual active ingredients and combination systems for a limited number of the specimens evaluated in the original study. Figure 1 outlines the systems for which data are presented.

The results of this study are reported in detail in Lloyd et al.1 This study concluded that the best overall efficacy of the single active ingredient fungicidal treatment is observed with CIL. This is also apparent from the condensed data presented here for SYT treatments. Of the combination systems studied, the CIL/DOT system is the most effective but the deficiency of the DCAD/DOT system is limited to Cladosporium cladosporioides. The above observations related to the efficacy of DOT alone are consistent with the findings of Clausen and West,4 who found that SYT specimens dip treated with a solution containing 15% DOT were resistant to Aspergillus niger in a standard laboratory mold test, but only when the specimens were kiln-dried prior to fungicidal treatment.

Field Study

Based on the observations from the in-vitro study the three fungicidal treatments with the best efficacy (Table 2) were chosen as the basis of a field study in southern Florida. Southern yellow pine was chosen as the test substrate and full bundles of construction lumber were utilized. The test was designed to give a "worst case" study consistent with the ambient temperatures and humidity conducive to surface mold growth. In addition, moisture levels in the test specimens were maintained by enclosure in tarpaulins. This protocol also ensured little air movement around the wood bundles, further enhancing the potential for mold growth.

The field test was initiated in mid-January 2005. Early inspections indicated relatively little mold growth attributable to the initial dryness of the test specimens and the lack of natural rainfall. It was then decided that artificial watering would be required on a weekly basis if no natural rainfall occurred. This practice was successful at inducing mold growth and by early April 2005 sufficient differences in surface mold were evident such that an objective assessment of these differences could be made. No attempt was made to identify the mold species, although both Trichoderma spp. and Penicillium spp. appeared to be the predominant species. The wood bundles were split to approximately half the depth and differences were recorded by photography. The black and white versions of these colored photographs are not suitable for reproduction here but the following order of efficacy. DOT/CIL = CIL/DOT/DDC/DCC = control (water) was apparent. A more objective assessment of performance was obtained by a detailed inspection of the two broad faces of each piece of lumber that received treatment. In all, some 6000 (1500 per treatment type) individual assessments were performed. This procedure is described in the experimental section and resulted in approximately 750 pieces of data per treatment type. These data are not presented here but several statistical assessments of these data were performed and are presented in Figures 5-7.

Figure 5 illustrates the effect of fungicidal treatment upon the mean percentage of surface area free of mold after approximately 90 days of exposure. In comparison to the water-treated control, CIL gave a significant positive effect on the mean percentage of surface area free of mold while the combination of CIL with DOT gave even more positive gain. The combination of DOT and DDAC had apparently little effect on the proportion of surface area free of mold.

An alternative statistical view of the data, presented in Figure 6, (median value of percentage surface area free of mold), suggests a similar relative order of performance for the DOT and CIL/DOT systems but a greater differentiation between these systems and the DOT/DDC system and water control. There is some indication from the data presented in Figures 5 and 6 that the DOT/DDC system performs somewhat worse than the control but this is likely of little statistical significance. A final perspective on this data is presented in Figure 7, which shows the effect of treatment type upon the relative incidence of perfectly clean boards at the end of the exposure period. Again the same conclusion is reached with regards to relative efficacy.

Independent of the statistical representation of the acquired data, it is clear that the field results for the
THE REAL WORLD

Despite attempts to mimic the real world application of antimicrobial products, the practical use of these materials inevitably produces the biggest challenge to their efficacy. Mold prevention products are no exception to this rule and it is worthwhile to make a few general comments regarding their application/use.

The targets for mold prevention products are principally new building construction and integral components of remodeling in existing structures. One of the biggest challenges to be faced by mold prevention products is their use in the crawl space environment. It is not uncommon in new home construction to proceed as far as the sub-floor and then be followed by weeks or months of exposure to the elements. Under these circumstances, mold contents can reach levels consistent with fungal decay. Surface mold prevention products are virtually useless under these circumstances and the building industry appears to have unrealistic expectations of mold prevention products in this area.

In unison with the development of surface mold prevention products, the building community must also accept its responsibility in reducing moisture ingress during the construction process. Closed crawlspaces are becoming more popular in some areas of the U.S. When correctly installed (use of mold prevention products and proper moisture management), these areas can be kept free of mold during and after the construction process. It is, however, common practice to construct the crawlspaces and leave construction debris in the crawlspaces for long periods. It is also not uncommon for the surface moisture barrier to be installed long after the basic construction of the crawlspace. This effectively creates a large-scale mold chamber with conditions conducive to mold infestation. There should be no surprise, therefore, when poorly managed crawlspace construction results in the incidence of surface mold on the wooden constituents, which are present in this environment.

CONCLUSIONS

The Micasa-Glaeser laboratory study concluded that, while CTL performed the best of the single fungicides, the DOT/DDAC and DOT/CTL combination systems had superior efficacy to any individual fungicide (CTL, DOT, and DDAC) against common mold forming fungi. Extending this study to a field trial with selected treatments further confirmed the superiority of the CTL and DOT/CTL systems and indicated that these latter systems will offer the greatest resistance to surface mold infestations should repeated exposure to moisture occur in buildings after construction is completed. The successful application of these products requires a responsible approach to moisture management and the adoption of good building practices by the building community.

ACKNOWLEDGMENTS

The authors are grateful to Dr. J.D. Micasa-Glaeser for her kind permission to include data extracted from the laboratory study reported in reference 1. The authors also acknowledge the contribution of Dr. T.L. Woods (formerly of Storram Corporation) to the field study performed in south Florida.

References:
Figure 5—Effect of fungicidal treatment on the overall mean percent of surface area free of mold (worst broad face) after approximately 90 days exposure in southern Florida.

Figure 6—Effect of fungicidal treatment on the median values of surface area free of mold (worst broad face) after approximately 90 days exposure in southern Florida.

Figure 7—Ratios of the percentage of 100% clean (worst broad face) boards after approximately 90 days exposure in southern Florida.

CTL and CTL/DOT systems confirm the observations made in the laboratory study. The data generated in the field study for the DOT/DDAC system, however, do not parallel the results of the laboratory study. Indeed, the DOT/DDAC system performs significantly worse than the DOT/CTL systems under the humid conditions of the field study. This effect is possibly a simple consequence of the high water solubility of DDAC (miscible in all proportions) since the bundles were exposed to natural rainfall and artificial watering. Additionally, CTL has extremely low solubility in water (approximately 10^{-4} in distilled water) and has high resistance to leaching from wood. Despite the fact that the laboratory study indicates that the DOT/DDAC system performed well against the DOT/CTL system, the narrower spectrum of activity for DDAC alone in comparison with CTL raises the possibility that the DOT/DDAC system could offer inferior performance to the DOT/CTL combination dependant upon the mold fungi encountered. Causen and Yang have observed that Rotula/quat systems have high minimal fungicidal concentrations (MFC_c), suggesting the limited efficacy of this type of combination for surface mold inhibition.

Development of test methods with which to prove efficacy for surface mold prevention is a subject which has attracted some interest. Causen and West employed an experimental rain chamber in an attempt to evaluate the effect of repeated wetting of construction lumber as frequently happens following delivery to construction sites. The results did not correlate well with evaluations performed by a standard ASTM method (ASTM D 4445-91) for surface mold evaluation and failure times were extended from 6 weeks to 2 months. They concluded that under such circumstances not only is active growth important but also removal of the mold spores and some mold from the wood surface by the "rain event." Such observations indicate how difficult it is to simulate what happens in the "real world" and also serve to emphasize that it should be no surprise that the Florida field study gave somewhat different results than the earlier laboratory study.

Products containing CTL and DDAC, alone or in combination with DOT, are registered by the U.S. Environmental Protection Agency for use in mold prevention. While the results of the laboratory study give a good indication of relative performance where the treated materials are protected from becoming wet (e.g., dried-in stage of framed construction), it is obvious that under circumstances where unintentional chronic exposure to water occurs (rain or condensed moisture), the CTL and particularly the DOT/CTL systems would be expected to offer superior resistance to mold infestation.

THE REAL WORLD

Despite attempts to mimic the real world application of antimicrobial products, the practical use of these materials inevitably produces the biggest challenge to their efficacy. Mold prevention products are no exception to this rule and it is worthwhile to make a few general comments regarding their application/use. The targets for mold prevention products are principally new building construction and integral components of remodeling in existing structures. One of the biggest challenges to be faced by mold prevention products is their use in the crawlspace environment. It is not uncommon in new home construction to proceed as far as the sub-floor and then be followed by weeks or months of exposure to the elements. Under these circumstances, moisture contents can reach levels consistent with fungal decay. Surface mold prevention products are virtually useless under these circumstances and the building industry appears to have unrealistic expectations of mold prevention products in this area.

In unison with the development of surface mold prevention products, the building community must also accept its responsibility in reducing moisture ingress during the construction process. Closed crawlspaces are becoming more popular in some areas of the U.S. When correctly installed (use of mold prevention products and proper moisture management), these areas can be kept free of mold during and after the construction process. It is, however, common practice to construct the crawlspace and leave construction debris in the crawlspace for long periods. It is also not uncommon for the surface moisture barrier to be installed long after the basic construction of the crawlspace. This effectively creates a large-scale mold chamber with conditions conducive to mold infestation. There should be no surprise, therefore, when poorly managed crawl-space construction results in the incidence of surface mold on the wooden constituents, which are present in this environment.

CONCLUSIONS

The Micules-Glaeser laboratory study concluded that, while CTL performed the best of the single fungicides, the DOT/DDAC and DOT/CTL combination systems had superior efficacy to any individual fungicide (CTL, DOT, and DDAC) against common mold forming fungi. Extending this study to a field trial with selected treatments further confirmed the superiority of the CTL and DOT/CTL systems and indicated that these latter systems will offer the greatest resistance to surface mold infestation should repeated exposure to moisture occur in buildings after construction is completed. The successful application of these products requires a responsible approach to moisture management and the adoption of good building practices by the building community.

ACKNOWLEDGMENTS

The authors are grateful to Dr. J.D. Micules-Glaeser for her kind permission to include data extracted from the laboratory study reported in reference 1. The authors also acknowledge the contribution of Dr. T.L. Woods (formerly of sostron Corporation) to the field study performed in south Florida.

References