NEW Technology for Enhancing Wood-Plastic Composites

by Kelly Williams and Bernard Bauman
Inhance/Fluoro-Seal Ltd.*

INDUSTRY BACKGROUND

Wood-plastic composites (WPC) are the combination of wood fibers, most commonly wood flour waste, and a thermoplastic such as high density polyethylene (HDPE), polypropylene (PP), or PVC. The polymer content is generally 40-50% by weight. WPCs are extruded into profile shapes via continuous extrusion for the building and construction products industry as an alternative to wood and treated wood. Consumers are choosing WPC over wood, even though it costs more, because of lower maintenance requirements and aesthetic appeal. WPC does not require painting, resists warping and termite attack, and is generally resistant to moisture-related issues such as mold development. The WPC industry has been growing faster than any other plastics industry since its emergence in the late 1980s.1 The market segments that have supported the annual growth rates of over 25% since 1998 have been largely decking and railing. The overall WPC industry has recently surpassed one billion pounds per year of manufactured composites in North America.1,2 This growth has been supported by the annual growth rates of over 25% since 1998 have been largely due to several key factors such as the increasing access and availability of products through retailers and contractor distributors as well as continued consumer demand, especially in outdoor living structures. Despite the healthy outlook, industry observers and analysts predict a period of consolidation that may result in two to three major players and 5-10 niche players.1 The keys to success during this phase will be distribution and capital. With prudent decision making relative to incorporation of incremental advancements in process and product innovation, companies should win the market recognition battles due to broader product offerings and greater market availability. Furthermore, the industry faces tough challenges for substantial growth into new markets for WPC, such as fencing, window and door trim/profiles, and siding. In order for WPC to be acceptable for these applications, significant product improvements are required. Therefore, any WPC producer at this time has the opportunity to become a major player by winning the process and product innovation battle.

PROBLEMS NEED TO BE SOLVED

While the WPC industry has continuously made improvements in aesthetics and final product performance over the last 10-15 years, significant performance deficits will still limit future growth potential. Specific deficiencies include color and appearance retention, over time, scratch and mar resistance, and ability to be painted different colors by owners. UV exposure and moisture absorption over time contribute substantially to the long-term degradation of WPC materials. The degradation predominantly involves aesthetics, with color fading and mold development as well as modest losses in physical properties. As WPC products have experienced many years in outdoor service, there are reports of staining and other maintenance oriented issues. It is now recognized that within 60-90 days of outdoor installation, the color of pigmented WPC begins to fade. As a marketing reaction, many WPC producers claim on their websites that this fading phenomenon makes the product look “natural” and more like “real wood.” There have been some modest improvements in addressing these issues such as the incorporation of additives to improve the bonding between the wood and polymer matrix. This has proven to reduce moisture absorption but has not proven to eliminate it long term. Other issues have arisen from these additives, such as unwanted reactions with the lower cost lubricant additives resulting in higher material costs and burdens on operations to balance new formulations. The pigment suppliers have also been working diligently to develop next generation pigment systems that resist fading; however, no cost-effective solutions are apparent on the horizon.

Since the introduction of WPC products, consumers have shown that they hold synthetic products to much more scrutiny than wood. For the premiums they pay, there is a clear expectation of a flawless product that requires no maintenance and looks as good five years out as it does when initially installed. This is a good and a bad thing for the WPC industry. It shows again that consumers are willing to pay for what they want. However, the progression of technology has yet to deliver all the value elements the consumer seeks in aggregate. One of the more profound deficiencies of WPC is the lack of coatability.

TECHNOLOGY OVERVIEW

This article discusses an approach to solve the major deficiencies of WPC as detailed. Basically, the technology consists of performing a surface modification on the WPC followed by application of an appropriate coating. By applying a high performance coating, such as the aliphatic polyurethane systems used on automobiles, WPCs can be colored and glossy, with 30 years projected durability. Appropriate coatings can provide outstanding scratch and mar resistance, as well as provide a surface that is easy to clean. Appropriate coatings can seal the WPC to prevent moisture absorption, mold growth, and physical property reduction. Using coating systems can also enable homeowners to repaint their WPC to match new decoration schemes.

Surface Modification

To the uninitiated, coating WPC lumber sounds quite simple and straightforward. But it is not. When WPC is extruded there is a thermodynamic driving force that causes the thermoplastic to end up on the exterior surface. This thermoplastic layer has a low surface energy, which makes it difficult to wet and coat with a paint or coating (and which give very poor adhesion). This same phenomenon makes it difficult to impose adhesives to adhere.

The plastics industry has developed several useful methods for surface-modifying low energy plastics to enable adhesion. These processes oxidize the surface, creating high surface energies. Examples of surface modification processes routinely used on plastics include corona discharge, flame treatment, and plasma.
NEW Technology for Enhancing Wood-Plastic Composites
by Kelly Williams and Bernard Bauman
Enhance/Fluoro-Seal Ltd.

INDUSTRY BACKGROUND

Wood-plastic composites (WPC) are the combination of wood fibers, most commonly wood flour waste, and a thermoplastic such as high density polyethylene (HDPE), polypropylene (PP), or PVC. The polymer content is generally 40–50% by weight. WPCs are extruded into profile shapes via continuous extrusion for the building and construction products industry as an alternative to wood and treated wood. Consumers are choosing WPC over wood, even though it costs more because of lower maintenance requirements and aesthetic appeal. WPC does not require painting, resists warping and termite attack, and is generally resistant to moisture-related issues such as mold development.

The WPC industry has been growing faster than any other plastics industry since its emergence in the late 1980s. The segment that supports the annual growth rates of over 25% since 1998 have been largely decking and railing. The overall WPC industry has recently surpassed one billion pounds per year of manufactured composites in North America. In decking, WPC has assumed nearly 20% market share versus treated lumber.

Even though the recent multi-year boom in the housing industry helped buoy the continued industry growth, Wall Street analysts still predict a bright outlook for the industry even though the housing industry has officially softened. The prediction is for WPC to continue to capture upwards of 20% unit share (40% dollar share) relative to treated wood. This continued growth is due to several key factors such as the increasing access and availability of products through retailers and contractor distributors as well as continued consumer demand, especially in outdoor living structures.

Despite the healthy outlook, industry observers and analysts predict a period of consolidation that may result in two to three major players and 5–10 niche players. The keys to success during this phase will be distribution, capital, brand, and process and product innovation. Arguably, companies such as Universal Forest Products, Ply Gem, Louisiana-Pacific, Certainteed,

and other broad-based building and construction products companies will see advantages in terms of distribution and capital. With product development making rapid advances in incremental advancements in processing and additive technologies, these same companies should win the brand recognition battles due to broader product offerings and greater market availability. Furthermore, the industry faces tough challenges for substantial growth into new markets for WPC, such as fencing, window and door trim/profiles, and siding. In order for WPC to be acceptable for these applications, significant product improvements are required. Therefore, any WPC producer at this time has the opportunity to become a major player by winning the process and product innovation battle.

PROBLEMS NEED 10 BE SOLVED

While the WPC industry has continuously made improvements in aesthetics and final performance product over the last 10–15 years, significant performance deficits will limit future growth potential. Specific deficiencies include color and appearance retention over time, scratch and mar resistance, and ability to be painted different colors by owners. UV exposure and moisture absorption over time contribute substantially to the long-term degradation of WPC materials. The degradation predominantly involves aesthetics, with color fading and mold development as well as modest losses in physical properties. As WPC products have experienced many years in outdoor service, there are reports of staining and other maintenance oriented issues. It is now recognized that within 60–90 days of outdoor installation, the color of pigmented WPC begins to fade. As a marketing tactic, many WPC producers claim on their websites that this fading phenomenon makes the product look “rustic” and more like “real wood.”

There have been some modest improvements in addressing these issues such as the incorporation of additives to improve the bonding between the wood and polymer matrix. This has proven to reduce moisture absorption but has not proven to eliminate it long term. Other issues have arisen from these additives, such as unwanted reactions with the lower cost lubricant additives resulting in higher material costs and burden on operations to balance new formulations. The pigment suppliers have also been working diligently to develop next generation pigment systems that resist fading; however, no cost-effective solutions are apparent on the horizon.

Since the introduction of WPC products, consumers have shown that they hold synthetic products to much higher scrutiny than wood. For the premiums they pay, there is a clear expectation of a flawless product that requires no maintenance and looks as good five years out as it does when initially installed. This is a good and a bad thing for the WPC industry. It shows again that consumers are willing to pay for what they want. However, the progression of technology has yet to deliver all the value elements the consumer seeks in aggregate. One of the more profound deficiencies of WPC is the lack of costability.

TECHNOLOGY OVERVIEW

This article describes an approach to solve the major deficiencies of WPC as detailed. Basically, the technology consists of performing a surface modification on the WPC followed by application of an appropriate coating. By applying high performance coating, such as the alkyl polyurethane systems used on automobiles, WPCs can be colored and glossy, with 30 years projected durability. Appropriate coatings can provide outstanding scratch and mar resistance, as well as provide a surface that is easy to clean. Appropriate coatings can seal the WPC to prevent moisture absorption, mold growth, and physical property reduction. Using coating systems can also enable homeowners to repaint their WPC to match new decoration schemes.

Surface Modification

To the uninitiated, coating WPC lumber sounds quite simple and straightforward. But it is not. When WPC is extruded there is a thermodynamic driving force that causes the thermoplastic to end up on the exterior surface. This thermoplastic layer has a low surface energy, which makes it difficult to wet and coat with a paint or coating (and which give very poor adhesion). This same phenomenon makes it difficult to impossible to adhere adhesives.

The plastics industry has developed several useful methods for surface-modifying low energy plastics to enable adherence. These processes oxidize the surface, creating high surface energies. Examples of surface modification processes routinely used on plastics include corona discharge, flame treatment, and plasma.

www.coatingstech.org
The presence of the polar groups on the surface is also important because they provide sites for strong adhesion of the coating to the surface through a variety of bonding mechanisms including hydrogen bonds to covalent bonds. Our tests showed that fluorooxidation of WPC substrates resulted in excellent adhesion of many types of conventional and UV-curable paints. The coating industry standard test for coating adhesion is ASTM D 3359. In this test, the coating surface is cut using a sharp razor blade cutting device to produce a series of cross-hatched cuts. Then a standardized piece of tape is pressed onto the cut area and removed. Based on the amount and distribution of paint pulled off on the tape, a rating is devised.

The initial experiments used ChoiceDeck brand railing products from AER, Inc. and Strandeck® components from Strandeck Corporation. Seven different paints were used on two variations of fluorooxidation—moderate and aggressive. The difference between moderate and aggressive treatment conditions in this case was that the concentration of fluorine was doubled in the aggressive conditions. Table 2 summarizes the results. Figure 3 illustrates the results, showing the amount of coating remaining on WPC after tape test.

There are additional attributes of the fluorooxidation process that make it ideal for this application. One major attribute is that the surface modification is permanent. There is a small amount of crosslinking at the surface that helps stabilize oxidation groups from rotating into the first several molecular layers, which is common with other treatment methods that fade over days or weeks. Another attribute is that the chemistry is extremely rapid. Since the oxidation occurs in less than one second, the process can be easily done in-line or in an off-line operation. The commercial significance of this will be discussed below. Since the process only modifies the outer few molecular layers, there is no visible change in topography. Thus, embossed patterns are unaffected.

The results of the first phase of experimentation proved three very important outcomes:

- The fluorooxidation chemistry is rapid and the process window is wide, which means that it is a robust, low-cost operation that does not require optimized control systems and highly trained personnel.
- A wide range of commercially available coatings can be used on a fluorooxidized WPC substrate.
- The technology works well on WPC made from different producers using different polyethylene, wool flour sources, and additives.

Coating Material and Process

Achieving an effective surface modification is only part of the solution to deficiencies of WPC. It is also necessary to select a right coating system that meets all of the performance requirements for specific applications, and that is economical. It is also noteworthy that WPC profiles for different applications can have totally different coating coverage requirements; for example, for siding applications, only the top and sides of the boards need to be coated, whereas in other applications the entire roof might need to be coated. For decking and railings products, full encapsulation is most desirable for durability, aesthetics, and composite protection from the environment.

Several polymer systems as well as hybrid systems can be used to create coatings. Each system provides a unique set of performance characteristics, unique application/curing requirements, and economics. Coatings economics are determined by many factors including costs of coating resins, solvent (VOC) abatement, coating application methods, efficiency of coating usage (overspray losses), space requirements, cure energy (drying) requirements, and capital costs.

From the WPC producer’s perspective, there are several options for using an application system, spread paint, and cure WPC profiles. Since the WPC extrusion process is an inherently linear process, adding the fluorooxidation adhesion treatment and coating/curing processes can be done in one line. Depending on the coating type and curing method, the process can run anywhere from 10 fpm to 100 fpm. Since the average WPC extrusion process operates at 8-12 fpm, the adhesion treatment and coating/curing process could be under utilized. There are advantages however to operating the process in-line with an extruder. For example, several extrusion lines can handle a single source of reactive gas that would enable WPC lines to employ multiple coating types and curing methods.

Another approach would be to operate the adhesion treatment and coating/curing processes off-line using lateral in and cure bays. This might be done at the WPC extruder’s location or on a toll-by-toll basis by another firm. In this manner, boards or profiles are fed continuously as cut stock into the process. Using conventional paints and coatings, the maximum line speeds are estimated at 30-50 fpm and infrared curing is employed. Even though conventional paints are low cost, they do present potential limitations. One issue is being able to pack and bundle boards immediately after curing. With conventional paints and coatings, there is a reusable potential for blocking. A more substantial limitation is being able to coat the sides of the board or profile in a single pass, which is desirable for both decking and railings products. Of course, WPC boards or profiles can be coated in multiple stages for applications requiring full surface coverage using conventional curing methods; however, the capital requirements and process floor space would be incrementally larger.

With 100% solids UV-curable coatings, each gallon is used fully with no volatile or halogen waste streams. It is known that UV-curable coatings are much more efficient than the paint system used for this report. Thus, although the paint system used for this report resulted in excellent adhesion performance, a much better result is expected from an UV-curable coating system.

Table 2—ASTM D 3359 Cross-Infth Adhesion Results

<table>
<thead>
<tr>
<th>Coating Type</th>
<th>Treatment Condition A</th>
<th>Treatment Condition B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Very Strong</td>
<td></td>
</tr>
<tr>
<td>Very Strong</td>
<td>Strong</td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td>Very Strong</td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td>Strong</td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td>Very Strong</td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td>Very Strong</td>
<td></td>
</tr>
<tr>
<td>Very Strong</td>
<td>Very Strong</td>
<td></td>
</tr>
</tbody>
</table>

Table 2—Surface Energy of WPC Before and After Fluorooxidation

<table>
<thead>
<tr>
<th>Water Contact Angle (°)</th>
<th>Surface Energy (erg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPC Before Fluorooxidation</td>
<td>30.4</td>
</tr>
<tr>
<td>WPC After Fluorooxidation</td>
<td>30.4</td>
</tr>
</tbody>
</table>

(2) Dr. Mark Leiby, Washington State University
The presence of the polar groups on the surface is also important because they provide sites for strong adsorption of the coating to the surface through a variety of bonding mechanisms ranging from hydrogen bonds to covalent bonds. Our tests showed that fluorooxidation of WPC substrates resulted in excellent adhesion of many types of conventional and UV-curable paints. The coating industry standard test for coating adhesion is ASTM D 3359. In this test, the coating surface is cut using a sharp razor blade cutting device to produce a series of cross-hatched cut marks. Then a standardized piece of tape is pressed onto the cut area and removed. Based on the amount and distribution of paint pulled off on the tape, a rating is derived.

However, these do not work on WPC. The reason is that the lignin in the wood flour is an effective antioxidant that inhibits the oxidation chemistry. In order to successfully oxidize the surface, a much more potent process is required.

Inhance/Fluoro-Seal has developed a reactive gas treatment that quickly and effectively oxidizes the surface, and facilitates coating and adhesion. The process uses elemental fluorine as an initiator for the permanent oxidation of the composite surface. Reaction of substrates with elemental fluorine (F_2) and oxygen (O_2) is termed fluorooxidation or easy fluorination. The reaction mechanism for fluorooxidation of polymers, such as polyolefins, begins with a fluorine atom abstracting a hydrogen atom from the carbon backbone to create a carbon radical. Once the carbon radical is formed, oxygen preferentially reacts with it to form a peroxy radical. Peroxy radicals subsequently undergo various reactions to form hydroxyl, carboxyl, and other polar functionalities. Figure 1 illustrates the fluorooxidation chemistry. Due to the high oxidation potential of F_2, the presence of lignin, cellulose, and hemi-cellulose have minimal effect on the reaction.

The creation of polar functional groups during fluorooxidation is very important for facilitating wetting of the WPC surface with a coating liquid. Improved wetting is important because it enables coating liquids to thoroughly and intimately associate with the WPC surface. A higher surface energy in general means greater interaction between the coating liquid and the substrate surface, as illustrated in Figure 2. Table 1 summarizes the change in water contact angle and surface energy caused by fluorooxidation of a WPC sample.

The process of the outer few molecular layers, there is no visible change in topography. Thus, embossed patterns are unaffected.

The results of the initial phase of experimentation proved three very important outcomes:

- The fluorooxidation chemistry is rapid and the process window is wide, which means that it is a robust, low-cost operation that does not require sophisticated control systems and highly trained personnel.
- A wide range of commercially available coatings can be used on a fluorooxidized WPC substrate.
- The technology works well on WPC made from different producers using different polyethylene, wood flour sources, and additives.

Coating Material and Process

Achieving an effective surface modification is only part of the solution to deficiencies of WPC. It is also necessary to select a right coating system that meets all of the performance requirements for specific applications, and that is economical. It is also noteworthy that WPC profiles for different applications can have totally different coating coverage requirements. For example, for siding applications, only the top and sides of the boards need to be coated, whereas in other applications the entire board might need to be coated. For decking and railing products, full encapsulation is most desirable for durability, aesthetics, and compositional protection from the environment.

Several polymer systems as well as hybrid systems can be used to create coatings. Each system provides a unique set of performance characteristics, unique application/ curing requirements, and economics. Coatings economics are determined by many factors including costs of coating resins, solvent (VOC) abatement, coatings application methods, efficiency of coating usage (overspray losses), space requirements, cure energy (drying) requirements, and capital costs.

From the WPC producer’s perspective, there are several options for using an adhesion bead, paint, and cure WPC profiles. Since the WPC extrusion process is an inherently linear process, adding the fluorooxidation adhesion treatment and coating/curing processes can be done in-line. Depending on the coating type and curing method, the process can run anywhere from 10 fpm to 100 fpm. Since the average WPC extrusion process operates at 8-12 fpm, the adhesion treatment and coating/curing process could be further utilized. There are advantages however to operating the process in-line with an extruder. For example, several extrusion lines can have a single source of reactive gas that would enable WPC lines to employ multiple coating types and curing methods.

Another approach would be to operate the adhesion treatment and coating/curing processes off-line using lateral in and cure beds. This might be done at the WPC producer’s location or on a toll-by-basis by another firm. In this manner, house profiles or fleets are fed continuously as output stock in the process. Using conventional paints and coatings, the maximum line speeds are estimated at 30-50 fpm and infrared curing is employed. Even though conventional paints are low cost, they do present potential limitations. One issue being able to up-stack and bundle boards immediately after curing. With conventional paints and coatings, there is a feasible potential for blocking. A more substantial limitation is being able to coat the sides of the board or profile in a single pass, which is desirable for both decking and raking products. Of course, WPC boards or profiles can be coated in multiple stages for applications requiring full surface coverage using conventional curing methods; however, the capital requirements and process floor space would be incrementally larger.

With 100% solids UV-curable coatings, each gallon is used fully with no volatiles or hazardous waste streams, it is known that UV-curable coatings are much more efficient in energy usage and discharge requirements.
The primary goal of this research was to develop a series of UV-curable paints and an off-line process to coat long, flat WPC stock, specifically decking, flooring, and railing profiles. Appendix A illustrates the basic process schematic for a system designed by Shield Finishing (Wig Rapids, MI). This system is designed for full process integration of the fluoroxidation adhesion treatment process and a coating and curing scheme that enables full encapsulation in a single pass up to 1.5 mil at speeds ranging from 50 fpm to 100 fpm. The UV-curable coatings were developed by Finishes Unlimited, Inc. (Sagus Grove, IL). UV-curable systems can be formulated to meet performance demands, such as toughness, flexibility, weatherability, etc. In this case, Finishes Unlimited developed a base formulation that is analogous to automotive exterior topcoats. This approach enabled the broadest balance of superior weatherability, impact, and abrasion resistance and overall adhesion to this new family of substrates. Table 3 details the performance results of the developed coating applied to WPC boards.

As can be seen from Table 3, the UV-curable coating developed for WPC substrates provides an excellent balance of toughness, weathering, and chemical resistance. This coating was developed for outdoor decking and flooring substrates. Due to the weathering performance and ability to tailor gloss and color, this same coating system is ideal for rading and siding products. For applications such as home siding, the performance requirements would likely dictate a different formulistic approach since both color and abrasion resistance is not as critical as color retention, weathering, and re-paintability.

Furthermore, the siding market also shows a higher preference for primed panels that are engineered for painting at the construction site.

CONCLUSION

In order for the use of WPC to continue to grow and extend into new market segments, some of the deficiencies of WPC must be overcome. Performing fluoroxidation on WPC followed by appropriate coating has been demonstrated to solve these problems. Furthermore, today's customers want a product with eye-appealing aesthetics that stay that way for many years, that is not tainted when scuffed, and which requires little to no maintenance—and, they are willing to pay for these benefits.

References

Appendix I

Inhouse Products Layout Concept

![Diagram of inhouse products layout concept]

www.coatingstech.org

August 2007

JCT CoatingsTech

Table 3: UV-Cured Paint Performance Results

<table>
<thead>
<tr>
<th>Paint Properties</th>
<th>60° Gloss ASTM D 523</th>
<th>Adhesion ASTM D 3359</th>
<th>Freeze resistance, 96 hr @ 20°F, -25°F</th>
<th>Heat resistance, 144 hr @ 120°F</th>
<th>Flexibility/Impact resistance</th>
<th>Insulation testing, 48 hr</th>
<th>Gloss retention (85° water)</th>
<th>Color change (ΔE CIEXAB)</th>
<th>Reprint adhesive, lightly sanded and repainted with Bare Patch & Fixer Paint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallon weight (<0.2 lb)</td>
<td>5.28</td>
<td>100%</td>
<td>Excellent</td>
<td>No effect</td>
<td>Excellent</td>
<td>No effect</td>
<td>Excellent</td>
<td>3.5 units</td>
<td>Excellent</td>
</tr>
<tr>
<td>Weight solids</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Volume solids</td>
<td>50-60 in</td>
<td>Now</td>
<td>Now</td>
<td>Now</td>
<td>Now</td>
<td>Now</td>
<td>Now</td>
<td>Now</td>
<td>Now</td>
</tr>
<tr>
<td>Viscosity @ 77°F</td>
<td>85 units</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Fig. 3a-3c: ASTM D3359 tape test results. WPC samples showing amounts of coating remaining after tape test. Labels 1-4 correspond to Table 2.

more costly on a per gallon basis versus conventional waterborne coatings, yet many companies that have made the conversion are still recognizing substantial economic benefit with greater flexibility and performance. To date, many manufacturers of fabricated wood products have made the switch from clear solventborne coatings to UV clearcoats. UV clearcoats are also prevalent in exterior automotive plastic components and many types of rigid and flexible packaging. The introduction of pigmented UV-curable paints is now emerging as formulations are being developed that allow full penetration of UV light.

UV-curable 100% solids coatings are an ideal class of coating materials for WPC products, and for the business model of WPC production and distribution. In the building and construction products industry it is customary for products to be shipped by truck to various regional distribution points. Shipping truckloads of WPC boards or profiles to centralized regional locations for painting operations has economic feasibility. Allowing many different types of products to be shipped to a regional location from multiple producing locations allows measurable advantages, especially for the larger building and construction products companies. UV-curable coatings offer further advantages, such as being able to coat all sides of a board or profile in a single pass. One of the more recognized benefits of UV is being able to over cure within seconds. Assuming the WPC being coated is long enough to coat and extend into a curing chamber, a bottom side lamp cures the area prior to reaching the supporting roller or belt. The full encapsulation process is capable of running in excess of 100 fpm.
more costly on a per gallon basis versus conventional waterborne coatings, yet many companies that have made the conversion are still recognizing the economic benefit with greater flexibility and performance. To date, many manufacturers of fabricated wood products have made the switch from clear solventborne coatings to UV clearcoats. UV clearcoats are also prevalent in exterior automotive plastic components and many types of rigid and flexible packaging. The introduction of pigmented UV-curable paints is now emerging as formulations are being developed that allow full penetration of UV light.

UV-curable 100% solids coatings are an ideal class of coating materials for WPC products, and for the business model of WPC production and distribution. In the building and construction products industry it is customary for products to be shipped by truck to various regional distribution points. Shipping trucks of WPC boards or profiles to centralized regional locations for painting operations has economic feasibility. Allowing many different types of products to be shipped to a regional location from multiple producing locations allows measurable advantages, especially for the larger building and construction products companies. UV-curable coatings offer further advantages, such as being able to coat all sides of a board or profile in a single pass. One of the more recognized benefits of UV is being able to coat over seconds. Assuming the WPC being coated is long enough to coat and extend into a curving chamber, a bottom side lamp creates the area prior to reaching the supporting roller or belt. The full encapsulation process is capable of running in excess of 100 fpm.

The primary goal of this research was to develop a series of UV-curable paints and an off-line process to coat long, flat WPC stock, specifically decking, flooring, and railing profiles. Appendix A illustrates the basic process schematic for a system designed by Shield Finishing (Wig Rapids, MI). This system is designed for full process integration of the fluoroxidation adhesion treatment process and a coating and curing scheme that enables full encapsulation in a single pass up to 1.5 mil at speeds ranging from 50 fpm to 100 fpm. The UV-curable coatings were developed by Finishes Unlimited, Inc. (Sugar Grove, IL). UV-curable systems can be formulated to meet performance demands, such as toughness, flexibility, weatherability, etc. In this case, Finishes Unlimited developed a base formulation that is analogous to automotive exterior topcoats. This approach enabled the best balance of superior weatherability, impact, and abrasion resistance and overall adhesion to this new family of substrates. Table 3 details the performance results of the developed coating applied to WPC boards.

As can be seen from Table 3, the UV-curable coating developed for WPC substrates provides an excellent balance of toughness, weathering, and chemical resistance. This coating was developed for outdoor decking and flooring substrates. Due to the weathering performance and ability to tailor gloss and color, this same coating system is ideal for rioting and siding products. For applications such as home siding, the performance requirements would likely dictate a different formulun approach since man and abrasion resistance is not an critical as color retention, weathering, and re-printability.

CONCLUSION

In order for the use of WPC to continue to grow and extend into new market segments, some of the deficiencies of WPC must be overcome. Performing fluoroxidation on WPC followed by appropriate coating has been demonstrated to solve these problems. Furthermore, today’s customers want a product with eye-popping aesthetics that stays that way for many years, that is not tainted when scuffed, and which requires little to no maintenance—and, they are willing to pay for these benefits.

References