Environmentally Advanced Technology for Semitransparent Deck Stains

by Greg Monaghan, Rohm and Haas Company

With new types of decking being introduced and pressure to formulate using greener, sustainable technology, new binder approaches are needed for semitransparent deck stains. Many conventional acrylic waterborne semitransparent stains have poor adhesion to the new types of wood treatments such as copper acetate, bonding to early sapifiers on exposure. Other alkyd-based waterborne stains can have poor dry and poor early water resistance on high contact woods such as cedar and redwood. There is also a need for a highly UV-resistant coating which will help preserve the distinctive color and appearance of exotic wood species such as teak and mahogany. At the same time that these substrates are being introduced, environmental initiatives have created a demand for a binder which is free of alkyl phenyl ethoxylate (APEO) surfactants, has low or zero volatile organic compounds (VOC), and which can be formulated without heavy metal drier. The development and testing of a new semitransparent stain binder which meets these environmental goals and also offers improved performance is presented.

MARKET TRENDS AND PERFORMANCE REQUIREMENTS

Many types of water-based binder chemistries are currently being used in semitransparent stains to meet the California Air Resources Board and Ozone Transport Commission regulations of less than 250 VOC. Alkyd acrylic hybrids, water reducible alkylds, oil in water or water in oil alloy emulsions, modified linseed oil, acrylics, polyurethanes, and vinyl acrylics have all been recommended for this use. In order to comply with the California South Coast Air Quality Management District’s 100 g/l VOC regulations for semitransparent stains, many companies are now evaluating binders designed for use at lower VOC levels. The 100 VOC stains usually have about four gallons less glycol or coalescent than stains formulated at 250 VOC.

The lower glycol and coalescent levels are a significant concern in semitransparent stains since removing the hydrophilic solvents may give a more hydrophobic film as the stain is drying and might reduce resolvability of the stain. Resolvability or lapping is important since painters often have to brush over a partially dried coat of the stain and the ability of the first coat to blend into the second will prevent the redistribution area from having a different color or sheen. Most water-based technologies, even water-reducible alkylds, do not give as good lapping as oil-based stains because the water used as the solvent does not dissolve the drying, partially coalesced polymer.

There are many ways of increasing the water solubility of the polytyres to improve this property but it is important that the polymer also have good early water resistance. Deck stains must have good water resistance after an overnight dry so that the color from a damp deck (which might have been exposed to dew) are not tracked into the house. Since commercial deck cleaners based on sodium hypochlorite/sodium hydroxide are frequently used, the stain should be insoluble in these solutions so that it is not removed when the deck is cleaned. On the other hand, the stain should be easily dissolved in aqueous deck strippers so that solvent-based paint strippers do not have to be used if the stain is to be removed. These conflicting solubility requirements must be formulated into a stain binder challenging.

Along with the proper solubility profile, the stain should be designed to meet possible future environmental regulations. Since there is concern about the bioactivity of degradation products of alkyl phenyl ethoxylate (APEO) surfactants, many companies are requesting that polymers be supplied without this class of surfactant. Many of the older acrylic binders recommended for semitransparent stains do contain this class of surfactant. New stain binders should be made without these surfactants so that companies are not forced to reformulate if these surfactants are eventually regulated in the North American market.

There have also been concerns about the toxicity of cobalt salts and increasing regulatory scrutiny in Europe so stains which do not use this metal drier are desirable. The binders which require the metal driers can also have poor performance on some of the substrates used for decking. The activity of the metal driers can be inhibited on high tannin woods like cedar and redwood, and water reducible oils or alkylds may have much slower dry on these substrates. The slower dry can result in stains which are tacky and water sensitive after an overnight dry.

Performance requirements of the semitransparent deck stains are demanding. UV light degrades the lignin in wood and, to some extent, the cellulose, and gives a weathered wood surface largely composed of loosely bound fibrils of partially degraded cellulose. Semitransparent stains are frequently applied with little adequate preparation of the substrate; so they need to be formulated at low viscosity and use binders designed to penetrate through the upper layer of loose fibers. The UV light can also degrade the stain binder as well as the substrate. Although hindered amine type UV light stabilizers can reduce UV-induced degradation of the different stain binders, a binder transparent to UV light should have the best long-term durability.

The stains also need to have good performance on new decking substrates. Some types of copper-based wood treatments which have replaced the CCA decking are reported to give bonds with reduced adhesion with water-based stains or adhesives. New stain binders need to have good adhesion on these new copper-based wood treatments. Other types of exotic hardwoods such as teak and mahogany are also being used for high-end decks. These woods often have a very distinctive and beautiful color variation along the grain when new; however, they fade to gray as rapidly as other types of wood. A stain which slows the bleaching of these woods will allow the colors to show through would be desirable. Finally, many new decks are made of wood plastic composites. These composite decks come in many colors but most will fade to a gray on exposure to UV light and could be stained to restore the natural wood color. Since these composites do not allow penetration of the stain even when weathered, a film-forming semitransparent stain with good abrasion resistance is needed.

Many commercial stains are also often formulated to give water beading. Water beading is sometimes thought to be a good measure of water repellency.
Environmentally Advanced Technology for Semitransparent Deck Stains

by Greg Monaghan
Rohm and Haas Company*

With new types of decking being introduced and pressure to formulate using greener, sustainable technology, new binder approaches are needed for semitransparent deck stains.

Many conventional acrylic waterborne semitransparent stains have poor adhesion to the new types of wood treatments such as copper acetate, sealing to early polyurethanes on exposure. Other alkyd-based waterborne stains can have slurry and poor early water resistance on high tech woods such as cedar and redwood. There is also a need for a highly UV-resistant coating which will help preserve the distinctive colors and appearance of exotic wood species such as Ipe and mahogany. At the same time that these substrates are being introduced, environmental initiatives have created a demand for a binder which is free of alkyl phenyl ethoxylate (APEO) surfactants, has low or zero volatile organic compounds (VOC), and which can be formulated without heavy metal driers. The development and testing of a new semitransparent stain binder which meets these environmental goals and also offers improved performance is presented.

Market Trends and Performance Requirements

Many types of water-based binder chemistries are currently being used in semitransparent stains to meet the California Air Resources Board and Ozone Transport Commission regulations of less than 250 VOC. Alkyd acrylic hybrids, water reducible alkyds, oil in water or water in oil alkyl emulsions, modified linenseed oil, acrylics, polyurethanes, and vinyl acrylics have all been recommended for this use. In order to comply with the California South Coast Air Quality Management (District’s 100 g) VOC regulations for semitransparent stains, many companies are now evaluating binders designed for use at lower VOC levels. The 100 VOC stains usually have about four gallons less gallon of co solvent than stains formulated at 250 VOC.

The lower glycol and co solvent levels are a significant concern in semitransparent stains since removing the hydrophilic solvents may give a more hydrophobic film as the stain is drying and might reduce resolvability of the stain. Resolvability or lifting is important since painters often have to brush over a partially dried coat of the stain and the ability of the first coat to blend into the second will prevent the restricted area from having a different color or sheen. Most water-based technologies, even water-reducible alkyds, do not give as good lifting as oil-based stains because the water used as the solvent does not dissolve the drying, partially crosslinked polymer.

There are many ways of increasing the water solubility of the polyesters to improve this property but it is important that the polymer also have good early water resistance. Deck stains must have good water resistance after an overnight dry so that the colors from a damp deck (which might have been exposed to dew) are not tracked into the house. Since commercial deck cleaners based on sodium hypochlorite/ sodium hydroxide are frequently used, the stain should be insoluble in these solutions so that it is not removed when the deck is cleaned. On the other hand, the stain should be easily dissolved in aqueous deck strippers so that solvent-based paint strippers do not have to be used if the stain is to be removed. These conflicting solubility requirements must formulate a stain binder challenging.

Along with the proper solubility profile, the stain should be designed to meet possible future environmental regulations. Since there is concern about the bioactivity of degradation products of alkyl phenyl ethoxylate (APEO) surfactants, many companies are requesting that polymers be supplied without this class of surfactant. Many of the older acrylate binders recommended for semitransparent stains do contain this class of surfactant. New stain binders should be made without these surfactants so that companies are not forced to reformulate if these surfactants are eventually regulated in the North American market.

There have also been concerns about the toxicity of cobalt salts and increasing regulatory scrutiny in Europe, so stains which do not use this metal drier are desirable. The binders which require the metal driers can also have poor performance on some of the substrates used for decking. The activity of the metal driers can be inhibited on high tannin woods like cedar and redwood, and water reducible alkyds or alkyds may have much slower dry on these substrates. The slower dry can result in stains which are tacky and water sensitive after an overnight dry.

Performance requirements of the semitransparent deck stains are demanding. UV light degrades the lignin in wood and, to some extent, the cellulose, and gives a weathered wood surface largely composed of loosely bound fibrils of partially degraded cellulose. Semitransparent stains are frequently applied without adequate preparation of the substrate, so they need to be formulated at low viscosity and use binders designed to penetrate through the upper layer of loose fibers. The UV light can also degrade the stain binder as well as the substrate. Although hindered amine type UV light stabilizers can reduce UV-induced degradation of the different stain binders, a binder transparent to UV light should have the best long-term durability.

The stains also need to have good performance on new decking substrates. Some types of copper-based wood treatments which have replaced the CCA decking are reporting to give bonds with reduced adhesion with water-based stains or adhesives. New stain binders need to have good adhesion on these new copper-based wood protectants. Other types of exotic hardwoods such as Ipe and mahogany are also being used for high-end decks. These woods often have a very distinctive and beautiful color variation along the grain when new; however, they fade to gray as rapidly as other types of wood. A stain which slows the bleaching of these woods will allow the colors to show through would be desirable. Finally, many new decks are made of wood plastic composites. These composite decks come in many colors but most will fade to a gray on exposure to UV light and could be stained to restore the natural wood color. Since these composites do not allow penetration of the stain even when weathered, a film-forming semitransparent stain with good abrasion resistance is needed.

Many commercial stains are also often formulated to give water beading. Water beading is sometimes thought to be a good measure of water repellency.
However, the actual value of this property in extending coating's substrate life is debatable. While water beading shows resistance of the stain to penetration by liquid water, wood can also pick up water from moisture vapor. Water vapor at atmospheric conditions of high humidity passes freely through stain and paint films, even those with excellent water beading. In extended periods of high humidity, this water vapor can raise the moisture content of wood up to the fiber saturation point. Since wood contains dimensional changes below the fiber saturation point, the different interfaces in wood undergo the same dimensional stresses from absorption of water and vapor from humidity. Nonetheless, the protection of wood from liquid water may be of some value. Home et al. found that the exposure of wood to UV light and water was worse than just exposure to UV light, and they proposed that the effect of the water was to leach the water-soluble UV degradation products of lignin from the wood. In that study, exposure of wood to water without UV light did not lead to significant degradation. Water repellency in a stain with good UV protection is thus probably desirable but not critical to the protection of a wood substrate. Aesthetically, water beading may be a problem, however. The water beads can remain on the surface of the deck for hours after rainfall and can leave rings of dirt when they dry. A stain which would shed water from the surface would probably be more desirable as a mechanism to protect the wood from liquid water.

At the same time that the stain formulator is trying to meet these VOC and performance requirements, there are some market trends which are pushing the performance to higher levels. Several paint companies are beginning to put multi-year performance guarantees on the labels of semitransparent deck stains. At the same time that more durable stains are being marketed, there is also a trend toward more translucent wood toners. These lightly tinted stains and toners do not have as much UV-blocking pigment as semitransparent stains but still need to give adequate UV protection of the wood substrate to prevent graying and degradation of the surface. Nearly transparent inorganic nano-sized UV-blocking pigments and new efficient, leach-resistant encapsulated organic UV absorbers9 are available and may be necessary for the more translucent stains and wood toners.

Acrylics are one class of water-based binder chemistry which is promoting for semitransparent stains. Acrylics are quite transparent to UV light and therefore more durable on exterior exposure than alkyd-based binders, which absorb UV light and degrade relatively rapidly. These acrylic binders do present one set of challenges to the stain formulator, however. Because they are such durable films, the acrylics in semitransparent stains can sometimes flake and peel if the UV light causes the wood beneath it to degrade. An acrylic-based stain should have enough UV protection built into it to prevent the degradation of the substrate. Another challenge for formulators is that most acrylics do not have the resiliency necessary for good lapping properties. Finally, most acrylics are not resistant to commercial aqueous deck strippers very well.

A new acrylic binder has been developed to meet these challenges. This APEO-free acrylic polymer incorporates a unique functionality which helps it adhere strongly onto the surface of iron oxide pigments. This adsorption helps stabilize and stabilize conventional and ultra-fine iron oxide pigments against flocculation both in the wet stain and also as the film is drying. Since nonfloculated iron oxide pigments would be expected to be more effective at blocking UV light, the adsorbed polymer might have the effect of reducing the degradation of the underlying wood substrate and giving a longer service life than conventional acrylins. The new acrylic binder also incorporates a unique dual charge stabilization to give improved adhesion on wood and treated wood substrates. It is thought that the particle stabilization may keep the particles from flocculating and may slow the increase in viscosity as the water is wicked from the stain into the substrate. Since they are less flocculated and lower viscosity, the polymer particles may have better lattice and achieve some penetration into the open lumen of the fractured surface cells. This desirable insatiable on the surface of the wood might be expected to help form a better bond between the polymer particles and the wood.

Finally, the new acrylic polymer has carefully balanced hydrophobic functionality to give good resiliency and lapping at 100 VOC, but still have excellent water resistance after an overnight dry. The acrylic polymer also has excellent resistance to high pH sodium hydroxide/sodium hypochlorite commercial deck cleaners, so the surface can be cleaned without damaging the stain. On the other hand, it was also designed to be easily removed with commercial water-based deck strippers.

MATERIALS AND METHODS

An experimental acrylic polymer (designated EXPER 1) was tested for stain performance and compared to two conventional acrylic stain binders, one an acrylic hybrid stain binder and two commercial acrylic semi-transparent stains which were made at 150 and 250 VOC. The experimental polymer was made to have good film formation at low wood temperatures (40°F) and required just 2% coalescent. Coalescent was added as needed to the conventional acrylic binders to give good low temperature film formation at 40°F. The commercial controls were purchased as unitized bases and the same level of universal colorant was added to each stain (1.5 oz. of universal colorant per gallon). The experimental stains were formulated at 30% volume solids and were made at 100 VOC with Excel® and propylene glycol.

Laboratory tests for lapping were run on smooth cedar at 10-15 dry time by brushing 15 strokes into a drying stain film with a new coat of stain. Lapped areas were evaluated for sheen and color differences where the second coat of stain was applied over the drying first coat. The relative resiliency and early abrasion resistance were estimated using a Crockmeter rub test. A 0.5 wet mill dried abrasive was made white Leneta Scrub Chart and tested for resistance in the wet stain at set time intervals (2.5, 5, and 7.5 hr). These tests used a James Heal monitized Crockmeter with 1000-gm weights and a 5/8-in. diameter stylus covered with linen cloth. The cycles to cut through across a shim were recorded.

This test on a nonporous surface like the Leneta Scrub Chart might be expected to overestimate the effect of pigments on the resiliency of a stain. Hydrophobic pigments in water-based stains brushed on wood might be expected to leave the stain film by rapid wicking into the wood, along with the water, but on a nonporous substrate, the glycols would leave the film only by slower evaporation after the wash. In order to determine the effect of VOCs on the lapping and Crockmeter rub test methods, a stain based on a conventional acrylic binder was made at 100 VOC (with 1 gal of propylene glycol) and at 250 VOC (with 5.5 gal of propylene glycol).

Overnight water resistance was evaluated for one and two coats on both treated pine and smooth cedar by drying the stained panel for 16 hr then placing it into a 5-gal box for 6 hr. The color rub off was evaluated by rubbing the surface lightly with a damp cheese cloth for 15 strokes and visually rating the color transfer onto the cheese cloth.

The Crockmeter rub resistance test was used to evaluate the development of overnight water and chemical resistance for the different binders. The overnight cure test was first run dry to estimate the abrasion resistance of the binders, and then the resiliency with water, 0.2 molar ammonium hydroxide (at pH 11), a commercial deck cleaner (aqueous solution of sodium hypochlorite/nitrate hydroxide at pH 11.8) and a commercial water-based deck stripper (sodium hydroxide/bleve) were tested.

Scanning Electron Micrographs (SEM) were collected for HEUR thickened mixtures of transonx yellow oxide and either neat EXPER 1 or a conventionally formulated acrylic binder. The SEM’s were taken on a JOEL 6700 field Emission SEM at 15 kV and 2000x magnification.

Results of the lab testing were compared to one year exposure for these stains. High overnight exposure with and without foot traffic on cedar, eastern white cedar, cypress, and mahogany were evaluated.

<table>
<thead>
<tr>
<th>Stain Type</th>
<th>EXPER 1 Acrylic Binder (100 VOC)</th>
<th>Conventional Acrylic Binder #1 (100 VOC)</th>
<th>Conventional Acrylic Binder #2 (250 VOC)</th>
<th>Conventional Acrylic Binder #3 (100 VOC)</th>
<th>Aqueous Conventional Acrylic Stain at 250 VOC</th>
<th>Aqueous Conventional Acrylic Stain at 250 VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Min Lapping</td>
<td>2.5-hr Dry</td>
<td>5-hr Dry</td>
<td>7.5-hr Dry</td>
<td>2.5-hr Dry</td>
<td>5-hr Dry</td>
<td>7.5-hr Dry</td>
</tr>
<tr>
<td>Leneta Scrub Chart</td>
<td>21</td>
<td>56</td>
<td>65</td>
<td>30</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>3000-gm weights with a 5/8-in. diameter stylus lined with linen cloth</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Aqueous commercial deck cleaner (sodium hydroxide)</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Aqueous commercial deck cleaner (sodium hydroxide)</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
<tr>
<td>Aqueous commercial deck cleaner (sodium hydroxide)</td>
<td>120</td>
<td>240</td>
<td>300</td>
<td>240</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

(1) The lapping test was run on smooth cedar. A 0.5 wet mill dried abrasive was used with 15 strokes for each stain on the Leneta chart for 10-15 min. Lapping was run as a separate test from the 3000-gm weights on the Leneta chart. Aqueous commercial deck cleaners were applied to the lapping film and the cycle of 40 strokes was run through across a shim after immersion. Low water (240 g/l) and high (750 g/l) for good variability of the acrylic binder on a wet Cedar surface.

www.cootingtech.org

March 2008

March 2008
however, the actual value of this property in extending coatings life is debatable. While water beading shows a resistance of the stain to penetration by liq-
uid water, it can also pick up water from moisture vapor. Vapor at atmospheric conditions of high humidity moves freely through stain and paint films, even those with excellent water beading. In extended periods of high humidity, this vapor water can raise the moisture content of wood up to the fiber saturation point. Since wood shows dimensional changes be-
low the fiber saturation point, the different interfaces in wood undergo the same dimensional stresses from ab-
sorption of water and vapor from humid-
ity. Nonetheless, the protection of wood from liquid water may be of some value. Hence it is found that the exposure of wood to UV light and water was worse than just exposure to UV light, and they proposed that the effect of the water was to leach the water-soluble UV degradation products of lignin from the wood. In this study, exposure of wood to water/UV light did not lead to significant degradation. Water repet-
ency in a stain with good UV protection is thus proba-
bly desirable but not critical to the protection of a wood substrate, aesthetically, water beading may be a problem, however, the water beads can remain on the surface of the deck for hours after rainfall and can leave rings of dirt when they dry. A stain which would sheet water from the surface would probably be more desirable as a mechanism to protect the wood from liquid water.

At the same time that the stain formulator is trying to meet these VOC and performance requirements, there are some market trends which are pushing the performance to higher levels. Several paint companies are beginning to put multi-year performance guarantees on the labels of semitransparent deck stains. At the same time that more durable stains are being marketed, there is also a trend toward more translucent wood toners. These lightly tinted stains and toners do not have as much UV blocking pigment as semitransparent stains but still need to give adequate UV protection of the wood substrate to prevent graying and degradation of the surface. Nearly transparent inorganic nano-sized UV blocking pigments and new efficient, less resis-
tant encapsulated organic UV absorbers \(\text{are available and may be necessary for the more translucent stains and wood toners.} \)

Acrylics are one class of water-based binder chem-

Technology Today

A new acrylic binder has been developed to meet these challenges. This APEO-free acrylic polymer incor-
porates a unique functionality which helps it adhe-
ress onto the surface of iron oxide pigments. This absorp-
tion helps separate and stabilize conventional and ul-
tratine iron oxide pigments against flocculation both in the wet stain and also as the film is drying. Since nonlabeled iron oxide pigments would be expected to be more effective at blocking UV light, the adsorbed polymer might have the effect of reducing the degra-
dation of the underlying wood substrate and giving a longer life service than conventional acrylics.

The new acrylic binder also incorporates a unique dual charge stabilization to give improved adhesion on wood and treated wood substrates. It is thought that the particle stabilization may keep the particles from flocculating and may slow the increase in viscosity as the water is wicked from the stain into the substrate. Since they are less flocculated and lower viscosity, the polymer particles may have better lapping and achieve some penetration into the open lumen of the fractured surface cells. This decreases the inorganic partic-
ties on the surface of the wood might be expected to help form a better bond between the polymer particles and the wood.

Finally, the new acrylic polymer has carefully bal-
anced hydrophilic functionality to give good resolubil-
ity and lapping at 100 VOC, but still have excellent wa-
ter resistance after an overnight dry. The acrylic polymer also has excellent resistance to high pH sodium hydroxide/sodium hypochlorite commercial deck cleaners, so the surface can be cleaned without damaging the stain. On the other hand, it was also de-
signed to be easily removed with commercial water-
base deck strippers.

Materials and Methods

An experimental acrylic polymer (designated EXP 1) was tested for stain performance and compared to two conventional acrylic stain binders and one acrylic hy-

Figure 1—Two-minute lapping of semitransparent stains on cedar. The data rates in the middle of the panels is where the fresh stain was brushed on top of a coat of stain which had dried for 10 min. Stains with good mobility and lapping have darker, more visible area where the coats overlapped. The conventional acrylic stain lost less resolubility and worse lapping than the EXP-1 stain.

<table>
<thead>
<tr>
<th>EXP-1 Acrylic</th>
<th>Conventional Acrylic Binder #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyd-Acrylic Hybrid</td>
<td>Stain #1</td>
</tr>
<tr>
<td>Conventional Acrylic Binder #1</td>
<td>Stain #2</td>
</tr>
<tr>
<td>Conventional Acrylic Binder #2</td>
<td>Stain #3</td>
</tr>
<tr>
<td>Acrylic Hybrid/Acid Binder (100 VOC)</td>
<td>Stain #4</td>
</tr>
<tr>
<td>Acrylic Hybrid/Alkyl Binder (100 VOC)</td>
<td>Stain #5</td>
</tr>
<tr>
<td>Conventional Alkyd Acrylic Stain at 250 VOC</td>
<td>Stain #6</td>
</tr>
<tr>
<td>Acyclic Acrylic/Conventional Acrylic Stain at 250 VOC</td>
<td>Stain #7</td>
</tr>
<tr>
<td>Acryl Acrylic/Alkyl Acrylic Stain at 250 VOC</td>
<td>Stain #8</td>
</tr>
<tr>
<td>Acrylic Hybrid/Alkyl Hybrid Binder (100 VOC)</td>
<td>Stain #9</td>
</tr>
<tr>
<td>Acrylic Hybrid/Acid Binder (100 VOC)</td>
<td>Stain #10</td>
</tr>
<tr>
<td>Acrylic Hybrid/Alkyl Binder (100 VOC)</td>
<td>Stain #11</td>
</tr>
<tr>
<td>Acrylic Hybrid/Alkyl Hybrid Binder (100 VOC)</td>
<td>Stain #12</td>
</tr>
</tbody>
</table>

commercial controls were purchased as untreated basalts and the same level of universal colorant was added to each stain (1.5 oz. of universal colorant per gallon). The experimental stains were formulated at 20% vol-
tume solids and were made at 100 VOC with Texanol® and propylene glycol.

Laboratory tests for lapping were run on smooth cedar sapwood of 10 min dry time by brushing 15 strokes into a drying stain film with a new coat of stain. Lapped areas were evaluated for shine and color differen-
ces where the second coat of stain was applied over the drying first coat. The relative resolubility and early abrasion resistance were evaluated using a Crockett rub test. A 3.5 wet

molded in shape was made in white Leneta Scrub charts and tested for resistance in the wet stain at set time intervals (2.5, 5, and 7.5 hr). These tests used a James Heal motonized Crockett rub with 1000-gn weights and a 5.63/1000 diameter stylus covered with linen cloth. The cycles to cut through a shag were recorded. This test on a non-
porous surface like the Leneta Scrub Chart might be expected to overestimate the effect of gels on the resolu-
bility of a stain. Hydrophilic gels in water-based stains brushed on wood might be expected to leach the stain film by rapid wind-
ing into the wood, along with the water, but on a non-
porous substrate, the gels would leach the film only by slower evaporation after the wet. In order to deter-
m the effect of VOCs on the lapping and Crockett rub test methods, a stain based on a conventional acrylic binder was made at 100 VOC (with 1 gal of propylene glycol) and at 250 VOC (with 5.5 gal of propylene glycol).

Overnight water resistance was evaluated for one and two coats on both treated pine and smooth cedar by drying the stained panel for 16 hr then placing it into a 50-gallon box for 6 hr. The color rub off was evaluated by rubbing the surface lightly with a damp cheese cloth for 15 strokes and visually rating the color transfer onto the cheese cloth.

The Crockett rub resistance test was used to evalu-
ate the development of overnight water and chemical resistance for the different binders. The overnight cure test was first run dry to estimate the abrasion resistance of the binders, and then the resiliency with water, 0.2-
molar ammonium hydroxide (at pH 11), a commercial deck cleaner (aqueous solution of sodium hypochlo-
rite/sodium hydroxide at pH 11.8), and a commercial water-based deck stripper (sodium hydroxide base) were tested.

Scanning Electron Micrographs (SEM) were collected for HEUR strengthened mixtures of transoxide yellow oxide and either EXP-1 or a conventional acrylic binder. The SEMs were taken on a JSM 6700 F Field Emission SEM at 15 keV and 2,000x magnification. Results of the lab testing were compared to a 1-year exposure for these stains. High overnight upwelling with and without foot traffic on cedar, teak, redwood, CCA, copper azole treated pine, ipe, and mahogany were evaluated.

Table 1—Lapping of Stains and Resolubility of Drying Films

<table>
<thead>
<tr>
<th>Crockett Rub Test on Drying Films</th>
<th>Rub Resistance (Cycle to Cut Through)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP-1 Acrylic Binder (100 VOC)</td>
<td>2.5-hr Dry</td>
</tr>
<tr>
<td>Conventional Acrylic Binder #1 (100 VOC)</td>
<td>21</td>
</tr>
<tr>
<td>Conventional Acrylic Binder #2 (250 VOC)</td>
<td>300</td>
</tr>
<tr>
<td>Acrylic Hybrid/Acid Binder (100 VOC)</td>
<td>10</td>
</tr>
<tr>
<td>Acrylic Hybrid/Alkyl Binder (100 VOC)</td>
<td>10</td>
</tr>
<tr>
<td>Acrylic Hybrid/Alkyl Hybrid Binder (100 VOC)</td>
<td>28</td>
</tr>
<tr>
<td>Acrylic Hybrid/Alkyl Hybrid Binder (100 VOC)</td>
<td>100</td>
</tr>
<tr>
<td>Acrylic Hybrid/Alkyl Hybrid Binder (100 VOC)</td>
<td>175</td>
</tr>
<tr>
<td>Acrylic Hybrid/Alkyl Hybrid Binder (100 VOC)</td>
<td>102</td>
</tr>
</tbody>
</table>

11 The lapping rub test was run on smooth cedar. A normal load was applied with 50% pressure for a 10-s rub with the stain load for 10 s. Lapping was done with a mold-shaped, rounded edge steel plate and molded in shape was made in white Leneta Scrub charts and tested for resistance in the wet stain at set time intervals (2.5, 5, and 7.5 hr). These tests used a James Heal motonized Crockett rub with 1000-gn weights and a 5.63/1000 diameter stylus covered with linen cloth. The cycles to cut through a shag were recorded. This test on a non-porous surface like the Leneta Scrub Chart might be expected to overestimate the effect of gels on the resolubility of a stain. Hydrophilic gels in water-based stains brushed on wood.
TEST RESULTS

Lapping and Resolvability During Dry

In the lapping tests on smooth cedar (Figure 1, Table 1), the experimental acrylic EXP-1 in a 100 VOC stain was significantly better than the stain based on the conventional acrylic binders, even when the conventional acrylics were formulated at 250 VOC. The EXP-1 stain was equal to the alkyd acrylic hybrid stain binder for lapping.

In Crockmeter resolvability tests (Table 1) of the different stains during dry, the EXP-1 binder and the alkyd acrylic hybrid were excellent with cut through at -60 cycles and removal of the film along the path at up to 7.5 hr. The conventional acrylic binders at 100 VOC (or with additional glycid at 250 VOC) and two commercial stains based on acrylic binders had fair to poor resolvability at 2.5 hr.

EXP-1 Acrylic

Table 2—Resistibility Properties of Stains After 16-Hr Dry

<table>
<thead>
<tr>
<th>Stain Type</th>
<th>16-Hr Dry Crockmeter Test</th>
<th>Resilience (Cycles to Get Through)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP-1 Acrylic Binder (100 VOC)</td>
<td>5</td>
<td>500+</td>
</tr>
<tr>
<td>Conventional Acrylic Binder #1 (100 VOC)</td>
<td>5</td>
<td>500+</td>
</tr>
<tr>
<td>Conventional Acrylic Binder #2 (250 VOC)</td>
<td>5</td>
<td>500+</td>
</tr>
<tr>
<td>Conventional Acrylic Binder #3 (100 VOC)</td>
<td>5</td>
<td>500+</td>
</tr>
<tr>
<td>Alkyd Acrylic Hybrid Binder (100 VOC)</td>
<td>5</td>
<td>500+</td>
</tr>
<tr>
<td>Acrylic (commercial Acrylic Stain)</td>
<td>2</td>
<td>100+</td>
</tr>
<tr>
<td>Acrylic (commercial Acrylic Stain)</td>
<td>2</td>
<td>100+</td>
</tr>
</tbody>
</table>

Note:
- [1] Crockmeter: 16-h dry they gain in flowability catalyst for 6 hr. Dyes color bright white while using 12% stain. Ratings: 1-5, 6-20, or 25-50 are better and very poor.
- [2] Crockmeter: no color uptake or color intensity uptake is seen for all 12% stain, low 5-15, 16-25, 26-50 are very poor and very poor.

Discussion:

In the lapping tests the experimental acrylic EXP-1 was equal to the best of the water-reducible stain binders and better than the conventional acrylic binders. Interestingly, there was little change in the lapping as the glycol level in the conventional stain was increased from 100 to 250 VOC; however, it is clear that the hydroscopicity of the acrylic binder tested may have been too great to see small differences in lapping due to increased glycol level.

From the drying studies using the Crockmeter on nonporous substrates, the stain based on the EXP-1 binder had much longer resolvability (more than 7.5 hr) in the wet stain than conventional acrylics (less than 2.5 hr), even when the conventional acrylics were formulated at 250 VOC with additional propylene glycol. The excellent resolvability of the EXP-1 stain probably contributed to the good lapping performance. The stain based on the EXP-1 acrylic binder was equal to the alkyd acrylic hybrid stain for resolvability.

After an overnight dry, all the stains showed good color rub-off resistance on treated pine decking; however, on cedar, the acrylics were much better than the alkyd acrylic hybrids for overnight water resistance. The difference between the substrates was thought to be caused by the higher tanin levels in the cedar slowing the drying and catalyzed oxidative cure of the alkyd based stains. The slower dry could be a significant problem if not properly addressed.

Figure 3: SEM images of semi-transparent stains with ultraviolet red laser stimuli substrate. Smaller particle size and lower exposed pigment at the surface may indicate that the EXP-1 polymer is adsorbed onto the surface of the pigment and is preventing pigment flocculation.

Figure 4: Adhesion to cedar-treated pine: six-months exposure at horizontal. The conventional acrylics have severe flaking and poor adhesion on the cedar grain. On the same board, the EXP-1 acrylic has no flaking or loss of adhesion.

Figure 5: Flaking on exposure (copper azole treated pine decking exposed horizontal up). Flaking was rapid from 1-10 (a rating of 10 is no flaking). The conventional acrylics have severe flaking and loss of adhesion on copper azole treated pine. The EXP-1 stain has excellent adhesion.

Figure 6: Stains are compared on a pine wood substrate. EXP-1 Stain is smooth and glossy, while the conventional acrylics are rough and dull.
TEST RESULTS

Lapping and Resilibility During Dry

In the lapping tests on smooth cedar (Figure 1, Table 1), the experimental acrylic EXP-1 in a 110 VOC stain was significantly better than the stain based on the conventional acrylic binders, even when the conventional acryl nes were formulated at 250 VOC. The EXP-1 stain was equal to the alkyl-acrylic hybrid stain binder for lapping.

In Crockmeter resolubility tests (Table 1) of the different stains during dry, the EXP-1 binder and the alkyl-acrylic hybrid were excellent, with cut through at ~60 cycles and removal of the film along the path at up to 7.5 hr. The conventional acrylic binders at 100 VOC (or with additional glycol at 250 VOC) and two commercial stains based on acrylic binders had far to poor resolubility at 2.5 hr.

Color Transfer and Solubility in Aqueous Solutions after Overnight Dry

All the binders had good overnight water resistance in a color rub-off test on pine, however the alkyl-acrylic hybrid had poor overnight water resistance on the cedar substrate (Figures 2 Table 2).

In the overnight dry Crockmeter rub test, all the stains based on acrylic binders and commercial acrylic stains had excellent water resistance and resistance to the commercial deck cleaner (no fail at 300 cycles). The commercial binders had good resistance like EXP-1, a stain aqueous commercial deck stripper and in a dilute ammonium hydroxide solution (0.2 Molar, pH 11), while the EXP-1 stain had good resolubility in those two solutions. The alkyl-acrylic hybrid stain had poor dry abrasion resistance at one-day dry and was retested at one-week cure. At one week the alkyl-acrylic hybrid binder had fair water resistance but poor resolubility to the commercial deck cleaner.

SEM Images

SEM images (Figure 3) of the EXP-1 binder and one of the conventional acrylcs in HHUR thickened stains containing ultralite iron oxide pigments indicated that the experimental alkyl-acrylic had fewer pigment particles exposed at the surface. The stain based on the EXP-1 binder also had smaller pigment particles and less pigment flocculation than the stain with the conventional acrylic binder.

Exposition Results

Exposures of the stains were also evaluated. When exposed horizontal up on copper azole treated pine, stains based on two conventional acrylic binders were showing flaking and peeling on the lathwood grain after just 6-months exposure (Figures 4 and 5).

In another footbridge exposure on treated yellow pine, the experimental stain binder had better durability than a commercial oil-based stain, a commercial water-based alkyl acrylic hybrid, and a commercial semitransparent stain based on an acrylic binder with alkyl modification (Figure 6).

In another horizontal up exposure at six months on dark oak, the EXP-1 binder based on EXP-1 had better color retention than stains based on two conventional acrylic binders with the same levels of ultralite iron oxide pigment and UV absorbers (Figure 7).

Discussion

In the lapping tests the experimental acrylic EXP-1 was equal to the best of the water-reducible stain binders and better than the conventional acrylic binders. Interestingly, there was little change in the lapping as the glycol level in the conventional stain was increased from 100 to 250 VOC; however, it is clear that the hydrophobicity of the acrylic binder tested may have been too great to see small differences in lapping due to increased glycol levels. It is clear, however, that the EXP-1 binder was equal in lapping to the best of the water-based binders and stains tested.

From the drying studies using the Crockmeter on porous substrates, the stain based on the EXP-1 binder had much longer resolubility (more than 7.5 hr) in the wet stain than conventional acrylics (less than 2.5 hr), even when the conventional acrylcs were formulated at 250 VOC with additional propylene glycol. The excellent resolubility of the EXP-1 stain probably contributed to the good lapping performance. The stain based on the EXP-1 acrylic binder was equal to the alkyl acrylic hybrid stain for resolubility.

After an overnight dry, all the stains showed good color rub-off resistance on treated pine decking; however, on cedar, the acrylcs were much better than the alkyl acrylic hybrids for overnight water resistance. The difference between the substrates was thought to be caused by the higher tanin levels in the cedar slowing the drying catalyzed oxidation of the alkyl based stains. The slower dry could be a significant problem if...
resistance and that sensitivity may mean that the films based on the alkyl acrylic hybrid would be damaged when the decks are cleaned.

The SEM micrograph shows fewer pigment particles exposed at the surface of the EXP-1 stain and fewer pigment agglomerates compared to a conventional acrylic. Since there were fewer pigment particles exposed at the surface, it seems likely that the better dispersion of the ultrafine iron oxides was due to polymer adsortion onto the surface of the pigment. The uncolloidal ultrafine iron oxide pigments might be expected to give longer durability on exposure since the wood substrate is better protected from degradation by UV light.

One-year exposures of these stains also showed better color retention for the EXP-1 stain on the darker wood substrates. This improved color retention may indicate less UV degradation of the dark wood substrates for the EXP-1 stain. Superior adhesion of the EXP-1 binder compared to conventional acrylics on copper azole treated yellow pine was also seen in the exposures. Better long-term durability of the EXP-1 stain on treated pine can also be seen in the exposures where it was compared to commercial water-based and solvent-based semitransparent stains.

CONCLUSION

Using a combination of innovative technologies in an acrylic stain binder, a 100 VOC semitransparent stain was formulated. This new binder offers some key advantages over current aqueous stain binder technologies. The excellent resolvability of the stain gives it better lapping than conventional acrylic binders. The good waterborne resistance on light tannin woods is an improvement on alkaline hybrid or water reducible alkyl stains which need driers for cure. The durable acrylic binder, in combination with ultrafine iron oxide pigments, gives a longer stain life in exposure testing. The stain also had superior adhesion to difficult substrates like copper azole treated woods. Low-VOC, APEO-free, and metal drier-free semitransparent deck stains based on this combination of innovative acrylic technologies can give improved performance while meeting environmental and regulatory requirements.

ACKNOWLEDGMENTS

The author would like to thank Cathy Finegan, Wei Zhang, Al Maurice, Susan Gill, Bill Howell, Shelly Fox, Martha Wietek, Jocelyn White, Peter Eastman, and other members of the analytical, research, synthesis, and marketing teams for their pioneering work in developing the EXP-1 stain binder.

References

2008 FSCT Virtual Learning Conferences

April 3, 2008
Coatings Fundamentals I: Overview, Formulation and Polymers
Ernest Gazotti, Air Products & Chemicals, Inc.

April 10, 2008
Coatings Fundamentals II: Polymers, Surface Chemistry, Rheology and Additives
Ernest Gazotti, Air Products & Chemicals, Inc.

April 24, 2008
Coatings Fundamentals III: Solvents, Pigments and Coating Testing
Ernest Gazotti, Air Products & Chemicals, Inc.

May 9, 2008
REACH—A Regulation that the North American Coatings Industry Can’t Afford to Ignore
John Mazz, Experience Health Sciences, Inc.

May 15, 2008
Physical Degradation of Coatings Due to Weathering
Brian Hendricks, North Dakota State University

May 22, 2008
Service Life Prediction—Concepts and Metrolologies
Allen Ziekst, Atlas Material Testing Technology, LLC

June 10, 2008
What’s in a Can of Paint?—Formulating
Waterborne Coatings for the Architectural Market
Linda Adamson, Rome and Haas Co.

June 12, 2008
What’s in a Can of Paint?—Formulating
Waterborne Coatings for the Architectural Market
Linda Adamson, Rome and Haas Co.

June 19, 2008
Advances in the Study of High Temperature Fire Resistant Coatings: Carbonization, Polymerization
Robin Hutchison, Queen’s University

Check FSCT’s website for additional information:
www.coatingstech.org

FSCT
492 Nottawasaga Rd.
Blue Bell, PA 19422
Voice: 610-940-0777
Fax: 610-940-0792
education@coatingstech.org

2008 FSCT Virtual Learning Conferences

36 March 2008
JCT CoatingsTech
March 2008 37
www.coatingstech.org
the alkyd acrylic hybrid stain remained tacky and water sensitive overnight.

In Crockmeter testing of films dried overnight, the EXP-1 stain was excellent when tested dry, which indicates good early abrasion resistance, and when tested with water, showed excellent early water resistance. It also had good resistance to commercial deck cleaner, indicating that the EXP-1 stain could be cleaned as necessary without damaging the film. The EXP-1 stain did redissolve moderately easily in dilute ammonium hydroxide with water, showed excellent early water resistance. It redissolved in the dilute ammonium hydroxide solution or hybrid had poor abrasion resistance after an overnight dry, it had fair water resistance but poor deck cleaner resistance and that sensitivity may mean that the films based on the alkyd acrylic hybrid would be damaged when the decks are cleaned.

The SEM micrograph shows fewer pigment particles exposed at the surface of the EXP-1 stain and fewer pigment agglomerates compared to a conventional acrylic. Since there were fewer pigment particles exposed at the surface, it seems likely that the better dispersion of the ultrafine iron oxides was due to polymer adsorption onto the surface of the pigment. The unagglomerated ultrafine oxide pigment particles might be expected to give longer durability on exposure since the wood substrate is better protected from degradation by UV light.

One-year exposures of these stains also showed better color retention for the EXP-1 stain on the darker wood substrates. This improved color retention may indicate less UV degradation of the dark wood substrates for the EXP-1 stain. Superior adhesion of the EXP-1 binder compared to conventional acrylics on copper azole treated yellow pine was also seen in the exposures. Better long-term durability of the EXP-1 stain on treated pine can also be seen in the exposures where it was compared to commercial water-based and solvent-based semitransparent stains.

CONCLUSION
Using a combination of innovative technologies in an acrylic stain binder, a VOC semitransparent stain was formulated. This new binder offers some key advantages over current aqueous stain binder technologies. The excellent resistibility of the stain gives it better lapping than conventional acrylic binders. The good overnight water resistance on high tannin woods is an improvement on alkyd acrylic hybrid or water reducible alkyd stains which need driers for cure. The durable acrylic binder, in combination with ultrafine iron oxide pigments, gave a longer stain life in exposure testing. The stain also had superior adhesion to difficult substrates like copper azole treated woods. Low-VOC APEO-free, and metal drier-free semitransparent deck stains based on this combination of innovative acrylic technologies can give improved performance while meeting environmental and regulatory requirements.

ACKNOWLEDGMENTS
The author would like to thank Cathy Finegan, Wei Zhang, Al Maurice, Susan Gill, Bill Howell, Shelly Fox, Martha Wittek, Jocelyn White, Pete Eastman, and other members of the analytical, research, synthesis, and marketing teams for their pioneering work in developing the EXP-1 stain binder.

References

36 March 2008
JCT CoatingsTech
www.coatingstech.org