Synthesis of Acrylic Resins for High-Solids Coatings by Solution and Separation Polymerization

Constantinos D. Diakoumakos, Qi Xu, Frank N. Jones*, and Jamil Baghdachi—Coatings Research Institute, Eastern Michigan University⁺ and Limin Wu—Fudan University^{**}

INTRODUCTION

The goal of this study was to find conditions under which oligomeric acrylic polyol resins with low polydispersity ($D = M_w/M_n$) and relatively low viscosity can be synthesized using an economical free radical polymerization process for use as resins in highsolids coatings. Low polydispersity is desired because it facilitates formulation of high-solids coatings—the lower the polydispersity at a given M_n , the higher the solids, other factors being equal. Acrylic oligomers for highsolids coatings often have number average molecular weights (M_n) of 1000-3000 (around 7-27 monomer units per chain) and polydispersities on the order of 1.7 to 2.1.^{1,2}

Two processes were studied: conventional solution polymerization under monomer-starved conditions³ and a modified process. In the modified process, polymerization was performed under monomer-starved conditions in aliphatic or cycloaliphatic solvents that are good solvents for the monomers but poor solvents for the products. We call the modified process *separation polymerization*, because the polymer, or oligomer, separates as it forms. It is similar to *precipitation polymerization* except that the polymer separates as a viscous liquid, not as a precipitate. The product often solidifies when it cools to room temperature.

Nine potential advantages of separation polymerization are described in the Discussion Section. Not all were demonstrated in this study, but we found that the process offers a convenient way to prepare acrylic polyol resins at high (>90%) solids. The resins can then be dissolved in any combination of solvents desired in the paint formulation. We speculate that the process reduces the likelihood that any solvent residues attached to polymers by chain transfer are less likely to adversely affect weatherability than residues of polar solvents, such as ketones.⁴

Two monomer line-ups were investigated: one is composed of methyl methacrylate (MMA), butyl acrylate (BA), styrene (Sty), and poly (ethylene glycol) methacryConventional solution polymerization under monomer-starved conditions was compared with separation polymerization, also known as monomer-starved, as a method for making acrylic resins with low polydispersity $(D=M_w/M_n)$. Separation polymerization employs aliphatic or cycloaliphatic solvents that are good solvents for the monomers but poor solvents for the resin; thus, the resin separates during polymerization. Various process conditions, initiators, chaintransfer agents, and solvents were studied, focusing mainly on a monomer line-up of methyl methacrylate, styrene, ethyl acrylate, and 2-hydroxy ethyl methacrylate in a 15/15/40/30 weight ratio. Two initiators, t-amyl peroxy 2-ethyl hexanoate and t-butyl peroxy 2-ethyl hexanoate gave about equal, excellent results. 2-Mercapto ethanol was selected as a chain transfer agent. With these ingredients, the separation polymerization method is capable of producing oligomeric acrylic polyol resins with polydispersities (D) of about 1.7 to 1.8 when M_n is in the range 1350 to 1600. These resins have substantially lower solution viscosities than a commercial benchmark resin, which has M_n =1230 and D=2.03. In preliminary tests of 2K polyurethane coatings, the film properties obtained with acrylics made by separation polymerization were, on balance, superior to those obtained with a commercial benchmark resin.

^{*}To whom correspondence should be addressed. †430 W. Forest Avenue, Ypsilanti, MI 48197.

^{**}Polymer and Coatings Program, Department of Materials Science, Shanghai 200433, P. R. China.

C.D. Diakoumakos et al.

(d) The symbol "ssps" means semi-solids phase separated with a solvent layer on the resin

late (PEGMA). This is believed to impart outstanding mar resistance to coatings (see Results Section). The other is composed of methyl methacrylate (MMA), ethyl acrylate (EA), styrene (Sty), and 2-(hydroxyethyl) methacrylate (HEMA), a line-up expected to provide an economical oligomer that would impart to coatings a good overall balance of properties.

EXPERIMENTAL

Materials

MONOMERS, CHAIN TRANSFER AGENTS, AND INITIATORS: Methyl methacrylate (99%), butyl acrylate (99%), styrene (Sty) (99%), poly(ethylene glycol)methacrylate (M_n = 526), ethyl acrylate (99%), 2-(hydroxyethyl) methacrylate (97%), 2-mercaptoethanol (ME) (98%), octanethiol (OC), and dodecanthiol (DO) were obtained from the Aldrich Chemical Co. *t*-Amyl peroxy 2-ethyl hexanoate (TAPH) (95%) and *t*-butyl peroxy 2-ethyl hexanoate (TBPH) (95%) were provided by Aztec Chemical Co.; *bis*(1,1-dimethylethyl)peroxide (Trigonox®-B, TRB) was obtained from Akzo Nobel Co.; and 2,2'-azobis(2methylbutyronitrile) (Vazo[®] 67, V67) was obtained from Aldrich Chemical Co.

SOLVENTS AND REACTION MEDIA: Mineral spirits (bp = $179-210^{\circ}$ C), xylene (bp = 135° C), toluene (bp = 110° C), and propyl acetate (bp = 105° C) were obtained from the Aldrich Chemical Co. and were used as supplied. Isopar[®]-E (bp = $118-140^{\circ}$ C), Isopar[®]-G (bp = $160-177^{\circ}$ C), and SC[®]-100 (bp = 160° C) were obtained from Exxon Chemical Co. Cypar[®]-7 (bp = $97-105^{\circ}$ C) and Cypar[®]-9 (bp = $138-168^{\circ}$ C) were obtained from Shell Chemical Co. For convenience, these materials are all called "solvents" in this paper.

CROSSLINKERS, BENCHMARK RESIN, SURFACE TENSION MODIFIER AND CATALYST: Polyisocyanates: Desmodur N-3300, an isocyanurate of 1,6-hexamethylene diisocyanate (HDI-ICU), and Desmodur Z-4470 BA, an isocyanurate of isophorone diisocyanate (IPDI-ICU) were obtained from Bayer Corp. The commercial benchmark resin, "Joncryl 920," an acrylic polyol supplied at 80% NVM in a methyl amyl ketone (MAK) solution, was obtained from SC Johnson. All these materials were used as received. Fluorad[®] (FC-430) obtained from the 3M and dibutyltin dilaurate (DBTDL) obtained from the Aldrich Chemical Co. were diluted to 20% and 10%, respectively, solutions in MAK before use. Fluorad[®] FC-430 is thought to be a partially fluorinated hydrocarbon; it serves as a surface tension modifier.

Test panels were $3 \times 6^{\prime\prime}$ cold-rolled steel panels with a dull matte finish, Q-Panel number R-36.

Synthesis of Acrylic Resins

GENERAL PROCEDURE: A 250-mL round-bottom flask equipped with a mechanical stirrer, a thermometer with a temperature controller, an N_2 inlet, a Graham condenser equipped with a cold finger using ice water as the cold trap, a dropping funnel and a heating mantle was charged with half of the total amount of the solvent

to be used and heated to reflux or to the desired temperature. In certain experiments, a similarly equipped 500-mL flask was used. A solution of mixed monomers, initiator, chain transfer agent, and the second half of the solvent was added dropwise into the flask over a period of 1.0 or 3.5 hr with stirring and heating at the desired reaction temperature. After addition was complete, an additional 10% of the amount of the initiator initially used for the polymerization was added, and the temperature was maintained for another 1.0 hr. When aliphatic or cycloaliphatic hydrocarbons were used as the solvents, phase separation was discernable when stirring was rapid during the reaction process and was obvious when the stirring speed was reduced. The proportions of reactants, the amount and type of solvent, and the reaction temperature for each oligomer are shown in *Tables* 1 and 2. The product solution or mixture was poured into a pre-weighed container and was cooled to room temperature. The acrylic resin was obtained as a solution, a solvent-swollen (ss) semi-solid, or a semisolid phase separated (ssps) depending upon the type and amount of solvent. The yield was >98%. Solids content (NVM) was measured by ASTM D 2369. When the resin was obtained with two distinctly separated phases (ssps), the upper layer was decanted, and NVM of the lower layer was measured.

Series A resins were synthesized with proportions by weight of monomers: MMA/Sty/BA/PEGMA = 12/13/31/44. Different initiators (TAPH, TBPH, TRB, and V67) and different solvents (propyl acetate, toluene, xylene, and mineral spirits) were employed in various amounts. (See *Table* 1 for details.)

Series B resins were synthesized with proportions by weight of monomers MMA/Sty/EA/HEMA = 15/15/40/30. Different initiators (TAPH or TBPH), solvents (xylene, mineral spirits, Cypar-9, Cypar-7, the Isopar-E and -G, and SC-100), and chain transfer agents [2-mercaptoethanol (ME), octanethiol (OC), and dodecanethiol (DO)] were studied. (See *Table 2.*)

EXAMPLE: SYNTHESIS OF RESIN A17: A 250-mL roundbottom flask equipped as described in the general procedure was charged with 7.2 g of mineral spirits (boiling point 175°C) and heated to reflux. A solution of 7.2 g of MMA, 7.8 g of Sty, 18.6 g of BA, 26.4 g of PEGMA, 1.8 g of TAPH, 3.0 g of 2-mercaptoethanol, and 7.5 g of mineral spirits was added over a period of one hour under a slow stream of N₂. During the process of the addition of the monomer mixture, the temperature was maintained at $175 \pm 2^{\circ}$ C. Phase separation became visible after about 10% of the monomer mixture had been added and became evident as the reaction progressed. When addition was complete another 0.18 g of TAPH was added, and refluxing was continued for one hour. The product mixture was poured into a weighed container and left to cool to room temperature. The acrylic resin separated as a white semi-solid. The upper, solvent-rich, layer was poured off; NVM of the bottom layer was 90%.

EXAMPLE: SYNTHESIS OF RESIN **B6**: A 250-mL roundbottom flask equipped as described in the general procedure was charged with 15 g of mineral spirits and heated to 150°C. A solution of 9.1 g of MMA, 9.1 g of Sty, 24.2 g of EA, 18.5 g of HEMA, 1.9 g of TAPH, 3.1 g of 2mercaptoethanol, and 15 g of mineral spirits was added over a over a period of one hour under a slow stream of N₂. During the process of the addition of the monomer mixture, the temperature was maintained at $150 \pm 2^{\circ}$ C. Phase separation became visible after about 10% of the monomer mixture had been added and became evident as the reaction progressed. Another 0.19 g of TAPH was added at once, and refluxing was continued for one hour. The product mixture was poured into a weighed container and left to cool to room temperature. The acrylic resin separated as a white semi-solid. The upper, solvent-rich, layer was poured off; NVM of the bottom layer was 92%. Analysis of the two layers by gas chromatography showed unreacted monomer content was 0.2~wt% in the resin layer and 0.15~wt% in the solvent layer.

Characterization of Resins

Gel permeation chromatography (GPC) analyses were carried out with a Hewlett Packard 1050 series Liquid Chromatograph with an HP 1047A differential refractometer as the detector. THF was used as a solvent at a flow rate of 0.9 mL/min through a series of three Phenogel[®] columns (pore size: 10^5 , 10^3 , 10^2 Å). During the study, the columns wore out and were replaced with new ones. Nine-point polystyrene calibration standards were used with the old columns and 13-point polystyrene standards were used with the new ones. Comparisons with selected resins showed that the old and new columns and calibration procedures gave the same M_n values within experimental error; the new columns gave slightly lower M_w/M_n values with the same resin.

Gas chromatography (GC) analysis of silylated samples was performed using a Hewlett-Packard 5809A Gas Chromatograph with a flame ionization detector. Silylated 1,4-butanediol was used as an internal standard. The silylating agent was an 80/20 w/w mixture of hexamethyldisilazane and N,O-bis(trimethylsilyl)trifluoroacetimide.

Samples of acrylic resins for differential scanning calorimetry (DSC) were dissolved in MAK, concentrated in a rotary evaporator at 70°C for five hours at water aspirator pressure and then kept in an oven for five days at 70°C under vacuum. DSC was performed on the same resins with two instruments: (1) a Seiko DSC-220CU; samples were heated with a heating rate of 30°C/min from 30° to 150°C, and maintained at that temperature for three minutes to delete thermal history, then quenched to -40°C, followed by re-heating at 20°C/min to 150°C, and (2) a TA Instruments Model 2100 modulated DSC with scanning from -60°C to 100°C at 5°C/min.

Viscosity of acrylic resins was determined using a Brookfield DV-II+ viscometer at 25°C with a #31 spindle rotating at 3 rpm. Non-volatile by mass (NVM) was determined by ASTM D 2369-95. The hydroxyl values of the acrylic resins were determined according to ASTM D 1957-86.

Preparation of Clearcoats

Series B acrylic resins obtained as ssps were concentrated in a rotary evaporator at 70° C for five hours at

water aspirator pressure to reduce volatile content below 1 wt%. The residual resins were dissolved in MAK. In certain instances, NVM was adjusted to 80%, and viscosity was measured. MAK solutions of these resins were combined with polyisocyanates HDI-ICU and/or IPDI-ICU, using a 1.1/1 NCO/–OH equivalent ratio (a 1.1:1 index), and FC-430 (0.25 wt% of total weight of the acrylic resin and polyisocyanate on a solids basis) were prepared at room temperature in a 50-mL beaker. Viscosity and NVM of the resulting solutions were measured; NVM was 80 to 90%. Just before application, dibutyltin dilaurate (0.05 wt% of the total weight of acrylic resin and polyisocyanate on total solids) was mixed thoroughly into the solution. Coatings with thicknesses of about 50 µm were prepared by casting the above solution on steel panels using a #34 drawdown rod. Some coatings were dried at ambient temperature for 96 hr, and other coatings were baked at 120°C for 30 min. Baked panels were kept at ambient temperature for one day before testing. Clearcoats made from Joncryl 920 and HDI-ICU and/or IPDI-ICU (1.1/1 of -NCO/-OH) were also prepared by this procedure and used as the benchmark.

Characterization of Clearcoats

Viscosity of clearcoats was determined using a Brookfield DV-II+ viscometer at 25°C with a #31 spindle rotating at 3 rpm. The NVM was determined by ASTM D 2369-95. Film thickness was measured with a Microtest[®] magnetic thickness gauge. The pencil hardness and both direct (DIR) or reverse (REV) impact resistance was measured according to ASTM D 3364 and D 2794 methods, respectively. Elongation tests were performed on a mandrel tester according to ASTM D 522-93a. Methyl ethyl ketone (MEK) resistance was tested by double rubbing with MEK saturated nonwoven paper ("Kim-wipeTM"); the nonwoven paper was kept saturated by MEK during the measurement; results were recorded as the smallest number of rubs that would expose bare metal of the panel. Adhesion was tested according to ASTM D 3359-95a.

RESULTS

Synthesis and Characterization of Series A Acrylic Resins

This study started with evaluation of different conditions for polymerization of Series A resins, made from the monomers MMA/Sty/BA/PEGMA in a 12/13/31/ 44 wt% ratio. This monomer combination was chosen because preliminary experiments indicated that resins with this composition impart outstanding mar resistance to coatings crosslinked with melamine-formaldehyde or polyisocyanate crosslinkers. Their exceptional mar resistance is attributed to the presence of a flexible spacer separating the crosslink site from the resin backbone, in accordance with previously reported results.⁵ The focus of this report is the effect of polymerization conditions on molecular weight and on polydispersity index, (D=M_w/M_n). The effects of amount and types of solvents, initiators, and chain transfer agents on the molecular weight and molecular weight distribution were studied. The results are shown in *Table* 1.

Resins A1-A14 were synthesized in propyl acetate, toluene, or xylene, good solvents for the product, while Resins A15-A20 were synthesized in mineral spirits, a solvent for the monomers but not for the products. As expected from well-known theories,⁶ M_n of the resins decreased as initiator and chain transfer agent levels increased. Polydispersity index (D) ranged from 2.3 to 7.5, suggesting that side reactions, perhaps chain transfer to poly(ethylene oxide) groups of the oligomer, increased D. There were indications that separation polymerization yields lower D than solution polymerization. For example, Resins A17 and A20, produced by separation polymerization, had a lower D than comparable Resin A13, made by solution polymerization. It is true that solution polymerized resins had relatively low D, but only when M_n was below about 1000. Separation polymerization seemed to give lower D than solution polymerization when M_n was about 2000. Xylene, which has the highest reflux temperature among solution polymerization solvents, produced the narrowest molecular weight distribution.

The M_n and D of resins A3, A5, A6, and A7, made with initiators TAPH, TBPH, TRB, and V67, respectively, indicated that comparable resins can be obtained by using TAPH, TBPH, or V67, but that TRB causes higher molecular weight and broader molecular weight distribution. Initiators TAPH, TBPH, and V67 have similar one-hour half-time temperatures of 85°, 84°, and 90°C, respectively, while TRB has higher one-hour half-time temperature of 136°C.⁷ Resins Å8 and A9, in which the feed time was 1.0 and 3.5 hr, respectively, had similar molecular weight and D, suggesting that the more rapid processing has little influence on the product, at least when working on this small scale. Comparison of resins A3 (D = 1441/636; 2.26) and A12 (D = 2532/988; 3.57) suggest that variations in the amount of solvent may make a substantial difference.

Synthesis and Characterization of Series B Acrylic Resins

The effect of process variables on synthesis of a more conventional monomer line-up for high-solids coatings was then studied. Series B acrylic resins were based on the monomer line-up: MMA/Sty/EA/HEMA = 15/15/40/30 (wt. ratio), in which HEMA serves as the functional monomer. *Table* 2 summarizes the results.

All the acrylic resins synthesized from this monomer line-up show significantly lower polydispersities than resins of Series A synthesized under similar conditions. When aliphatic or cycloaliphatic solvents were used, the Series B acrylic resins separate as a white semi-solid with a non-volatile content of 90% or more.

The effects of several process variables were studied:

MONOMER FEED **R**ATE: Resins B1 and B2 have essentially identical M_n and D. The only difference between these runs was monomer addition time, 3.5 hr for B1 and 1.0 hr for B2. This result supports the conclusion from Series A—that this much variation in feed rate has negligible effect. Therefore, in runs B3–B33 the monomer was added in one hour.

0 130H 0.0E 136Hendisphis 25 86° 28 190 192 192 0 1 0.0E 136Hendisphis 2 28 28 28 28 28 28 28 128	Acrylic Resins	Wt%∝ Initiator	Wt% Chain Transfer Agent	Polymerization T (°C) Solvent	Wt% Solvent	Product State	Mn	Mw	Mp	۵	(%) W/N
B2 374H 10/K 75 Mineral sprits 25 924 124 124 B2 374H 10/K 75 Mineral sprits 50 829 759 124 124 B2 374H 10/K 75 Mineral sprits 50 829 134 124 124 B2 374H 50K 15 Mineral sprits 50 859 134 124 124 B1 374H 50C 150 Mineral sprits 50 859 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124	Blb	3 TAPH	10 ME	175 Mineral spirits	25	psdss	728	1300	1192	1.78	92
Bit Total T	B2	3 TAPH	10 ME	175 Mineral spirits	25	sdss	738	1283	1188	1.74	16
Bit T/AH IOKE T/A Menol spritt T/A	B3	3 TAPH	10 ME	175 Mineral spirits	50	sdss	759	1314	1221	1.73	16
B6. 31 kH 51 kL 15 kH 50 kL 13 kH 13 kL 1	B4	3 TAPH	10 ME	150 Mineral spirits	50	sdss	796	1340	1264	1.68	16
Bb. J1AH 5/K IS 0/Mend spint 25 801 1340 2329 249 1361 Bc. J AAH 5/K IS 0/Mend spint 50 IS 0/Mend spint 50 1361 1361 1361 1373 B1 J AAH 5/K IS 0/Mend spint 50 IS 0/Mend spint 50 S0 Mend spint 50 S0 Me	B5	3 TAPH	5 ME	175 Mineral spirits	50	sdss	1319	2540	2452	1.92	92
BP ME+D IDM ME+DO IDM Metal Sprits 25 855 170 387 308 225 BP JDM IDM IDM Metal Sprits 50 IDM Metal Sprits 50 IDM Metal Sprits 50 10	B6	3 TAPH	5 ME	150 Mineral spirits	50	sdss	1349	2532	2439	1.87	92
Bit 31AH 10/LE 10/Le 10/Le 13/Le 14/Le 13/Le 13	B7	3 TAPH	5 ME+DO	150 Mineral spirits	25	sdss	1730	3897	3068	2.25	16
B0	B8	3 TAPH	10 ME	120 Mineral spirits	50	sdss	847	1465	1384	1.73	92
B101 37APH 5.CC 130 Minecic sprifts 561 106 240 B11 37APH 5.CC 130 Minecic sprifts 50 349 240	B9	3 TAPH	5 DO	150 Mineral spirits	50	sdss	2705	7641	4455	2.82	92
BI1 J APH 5 NE I20 Minecicipatity 50 SS3 146 2700 2647 189 B12 31 APH 6 DO 150 Minecicipatity 50 SS1 122 0.133 3792 302	B10	3 TAPH	5 OC	150 Mineral spirits	50	sdss	2177	5661	4106	2.60	16
B12 JAH 0.D0 150 Minecipisits 50 sts 212 673 392 309	B11	3 TAPH	5 ME	120 Mineral spirits	50	sdss	1466	2780	2647	1.89	16
B13 31AH 1000 175 Minecidsprits 25 stps 124 316 248 222 B14 31AH 10.0C0 175 Minecidsprits 50 spint 170 170 170 177 171 B16 31AH 10.0K=00 175 Minecidsprits 50 solution 81 179 170 170 170 170 171 B16 31AH 5 ME 135 Kylene 25 solution 81 171 171 171 171 171 171 171 275 256 276 <td>B12</td> <td>3 TAPH</td> <td>6 DO</td> <td>150 Mineral spirits</td> <td>50</td> <td>sdss</td> <td>2182</td> <td>6743</td> <td>3992</td> <td>3.09</td> <td>16</td>	B12	3 TAPH	6 DO	150 Mineral spirits	50	sdss	2182	6743	3992	3.09	16
Bit 31AH 10 Mit-O 150 Mineclishints 50 stps 112 1970 1870 175 Bit 31 APH 10 ME 135 Xylene 20 solution 816 137 141 137 171 Bit 31 APH 10 ME 135 Xylene 20 solution 816 137 <td< td=""><td>B13</td><td>3 TAPH</td><td>10 DO</td><td>175 Mineral spirits</td><td>25</td><td>sdss</td><td>1424</td><td>3166</td><td>2485</td><td>2.22</td><td>92</td></td<>	B13	3 TAPH	10 DO	175 Mineral spirits	25	sdss	1424	3166	2485	2.22	92
B15 31 APH 10ME 135 Xylene 50 solution 84.4 141 1375 171 B16 31 APH 5 ME 135 Xylene 25 solution 816 135 147 135 173 173 173 173 173 173 173 173 169 169 169 169 169 169 169 173 169 169 169 173 169 173 169 <t< td=""><td>B14</td><td>3 TAPH</td><td>10 ME+DO</td><td>150 Mineral spirits</td><td>50</td><td>sdss</td><td>1120</td><td>1970</td><td>1870</td><td>1.76</td><td>92</td></t<>	B14	3 TAPH	10 ME+DO	150 Mineral spirits	50	sdss	1120	1970	1870	1.76	92
B16 3 JAH 5 ME 135 Mone 25 solution 816 1331 167 187	B15	3 TAPH	10 ME	135 Xylene	50	solution	844	1441	1375	1.71	67
B17 3 TAH 5 ME 135 Xylene 50 solution 152 2854 2757 187 B19 3 TAH 5 ME 115 Sporter 50 solution 147 2472 2473 205 B19 3 TAH 5 ME 115 Sporter 50 solution 147 277 147 247 205 B20 3 TAH 5 ME 106 Sporter 50 solution 147 237 2356 199 B22 3 TAH 5 ME 106 Sporter 50 ss 1711 477 237 2356 199 B22 3 TAH 5 ME 104 CopateC 50 ss 199 274 237 216 B22 3 TAH 5 ME 104 CopateC 50 ss 193 217 237 217 217 218 216 216 216 216 216 216 216 216 216 216 216 216 216	B16	3 TAPH	5 ME	135 Xylene	25	solution	816	1383	1310	1.69	82
B18 31APH 3ME 135 Xylene 25 solution 2146 412 4173 205 B19 31APH 5 ME 115 lspoper*E 50 s* 1711 4772 3546 278 B19 31APH 5 ME 106 lspoper*E 50 s* 1711 4772 3546 278 B21 31APH 5 ME 106 lspoper*C 50 s* 1391 2030 2030 203 B22 31APH 5 ME 104 Spoper*C 50 s* 1391 2043 204 203 B22 31APH 5 ME 104 Spoper*C 50 s* 1391 2043 204 205 B22 31APH 5 ME 142 Cyper*C 50 s* 203 3414 3206 193 B22 31APH 5 ME 142 Cyper*C 50 s* 263 3414 3206 193 B23 31APH 5 ME 142 Cyper*C	B17	3 TAPH	5 ME	135 Xylene	50	solution	1522	2854	2757	1.87	72
BI9 37APH 5 ME 115 lsopar ⁶ -E 50 ss ⁶ 1711 4772 3546 278 B20 31APH 5 ME 105 lsopar ⁶ -E 50 ss 1187 2372 3346 199 B21 31APH 5 ME 106 lsopar ⁶ -G 50 ss 1391 2373 2365 199 B22 31APH 5 ME 104 Cypar ⁶ -C9 50 ssps 1391 2674 2592 199 B23 31APH 5 ME 104 Cypar ⁶ -C7 50 ssps 1439 3119 2674 2592 197 B23 31APH 5 ME 104 Cypar ⁶ -C9 10 ssps 1704 3204 197 B24 31APH 5 ME 142 Cypar ⁶ -C9 10 ssps 1704 3204 207 B25 31APH 5 ME 142 Cypar ⁶ -C9 10 ssps 2673 2673 207 B26 31APH 5 ME 142 Cypar ⁶ -C9	B18	3 TAPH	3 ME	135 Xylene	25	solution	2146	4412	4173	2.05	06
B20 31APH 5 ME 160 lspont*-G 50 ss 1187 2370 2356 1.99 B21 31APH 5 ME 160 lspont*-G 50 ss 199 2400 202 B22 31APH 5 ME 104 lspont*-C7 50 ss 139 2640 2892 139 B22 31APH 5 ME 104 Cypont*-C7 50 ss 1439 3119 2734 2192 B23 31APH 5 ME 104 Cypont*-C7 50 ss 1439 3119 2734 210 B25 31APH 5 ME 104 Cypont*-C9 10 ss 2040 172 2040 273 207 B25 31APH 5 ME 142 Cypont*-C9 10 ss 2040 273 207 B26 31APH 5 ME 142 Cypont*-C9 10 ss 263 376 173 B27 31APH 5 ME 142 Cypont*-C9 50 ss </td <td>B19</td> <td>3 TAPH</td> <td>5 ME</td> <td>115 Isopar®-E</td> <td>50</td> <td>SS[®]</td> <td>1711</td> <td>4772</td> <td>3546</td> <td>2.78</td> <td>79</td>	B19	3 TAPH	5 ME	115 Isopar®-E	50	SS [®]	1711	4772	3546	2.78	79
B21 31APH 5 ME 160 lsopart-G 10 ss 1288 2600 2400 202 B22 31APH 5 ME 142 Cypart-C7 5 ssps 1391 2614 2592 192 B23 31APH 5 ME 142 Cypart-C7 5 ssps 1391 2674 2592 192 B24 31APH 5 ME 142 Cypart-C7 5 ssps 1043 2104 1935 1043 2040 1935 1935 1935 1935 1935 1935 1935 1935 1935 1935 1935 1935 1935 1935 1935 1935 1935 2040 1935 2040 1935 2040 1935 2045 1935 2045 1935 2045 1935 2045 1935 2045 1935 2045 1935 2045 1935 2045 1935 2045 1935 2045 1935 2045 1935 2045 2045 2045 2045 2045 2045 2045 2045 2045 2045 2045 <t< td=""><td>B20</td><td>3 TAPH</td><td>5 ME</td><td>160 Isopar®-G</td><td>50</td><td>SS</td><td>1187</td><td>2370</td><td>2356</td><td>1.99</td><td>82</td></t<>	B20	3 TAPH	5 ME	160 Isopar®-G	50	SS	1187	2370	2356	1.99	82
B22 31APH 5 ME 142 Cypor**C9 50 ssps 1391 2674 2592 192 B23 31APH 5 ME 142 Cypor**C7 50 ssps 1439 3119 2734 216 B24 31APH 5 ME 142 Cypor**C7 50 ssps 1643 2734 216 B24 31APH 4 ME 142 Cypor**C9 10 ssps 1643 3204 1926 193 B26 31APH 5 ME 142 Cypor**C9 10 ssps 3414 3206 193 B26 31APH 5 ME 142 Cypor**C9 10 ssps 3414 3205 193 B26 31APH 5 ME 142 Cypor**C9 10 ssps 3533 3400 207 B37 31APH 5 ME 142 Minecial spirits 50 ssps 1640 2733 207 B30 31APH 5 ME 142 Minecial spirits 50 ssps 1640 2733 207 B31 31APH 5 ME 145 Minecial spirits	B21	3 TAPH	5 ME	160 Isopar®-G	10	SS	1288	2600	2400	2.02	82
B23 317AH 5 ME 104 Cypar*C7 50 ss 1439 3119 2734 2.16 B24 317AH 5 ME 104 Cypar*C7 50 ss 1043 2040 1726 1.95 B25 317AH 5 ME 104 Cypar*C9 10 ss 2040 1726 1.95 B25 317AH 5 ME 142 Cypar*C9 10 ss 2040 1726 1.93 B25 317AH 5 ME 142 Cypar*C9 10 ss 2036 3414 3206 1.93 B26 317AH 5 ME 142 Cypar*C9 10 ss 2038 3414 3206 1.95 B27 317AH 5 ME 142 Cypar*C9 10 ss 2673 2673 1.73 B28 317AH 5 ME 142 Cypar*C9 50 ssps 1541 2673 2673 1.73 B30 317AH 5 ME 145 Mineral spirits 50 ssps 1541 2673 1.73 B31 317AH 5 ME 145 Mineral spiri	B22		5 ME	142 Cypar®-C9	50	sdss	1391	2674	2592	1.92	16
B24 31APH 5 ME 160 SC®-100 50 sps 1043 2040 1926 1.95 B25 31APH 4 ME 142 Cypar®-C9 10 sps 1768 3414 3206 1.93 B26 31APH 5 ME 142 Cypar®-C9 10 sps 3734 3206 1.93 B27 31APH 5 ME 142 Cypar®-C9 10 sps 2036 4033 2040 1768 314 3206 1.93 B27 31APH 5 ME 142 Cypar®-C9 10 sps 2033 3400 2.04 183 2.07 2.08 3401 3206 1.93 B28 31APH 5 ME 145 Mineci spirits 50 sps 1541 2.073 2.035 1.13 B31 31APH 5 ME 145 Mineci spirits 50 sps 1523 2.013 1.173 B32 31APH 5 ME 145 Mineci spirits 50 sps 1521 1.73 B31 5 ME 145 Mineci spirits 50 sps 1.252	B23	3 TAPH	5 ME	104 Cypar®-C7	50	SS	1439	3119	2734	2.16	80
B25 31APH 4 ME 142 Cypar*-C9 10 sps 1768 314 3206 193 B25 31APH 3 ME 142 Cypar*-C9 10 sps 207 3206 193 B27 31APH 5 ME 142 Cypar*-C9 10 sps 2086 4324 4043 207 B28 31APH 5 ME 142 Cypar*-C9 10 sps 3533 3400 208 203 B28 31APH 5 ME 142 Cypar*-C9 10 sps 3533 3400 208 208 B29 31APH 5 ME 142 Cypar*-C9 50 sps 1541 2673 2532 177 B30 31BPH 5 ME 145 Minecial spirits 50 sps 1541 273 2474 173 B31 51BPH 5 ME 145 Minecial spirits 50 sps 1523 2474 173 B32 55 TBPH 5 ME 145 Minecial spirits 50 sps 1523 2474 173 B33 55 TBPH <td< td=""><td>B24</td><td>3 TAPH</td><td>5 ME</td><td>160 SC®-100</td><td>50</td><td>sdss</td><td>1043</td><td>2040</td><td>1926</td><td>1.95</td><td>16</td></td<>	B24	3 TAPH	5 ME	160 SC®-100	50	sdss	1043	2040	1926	1.95	16
B26 31 ZHH 3 ME 142 Cypar*C9 10 ss 2086 4324 4043 2.07 B27 2 TAPH 5 M E 142 Cypar*C9 10 ssps 1693 3533 3400 2.08 B27 3 TAPH 5 M E 142 Cypar*C9 10 ssps 1693 3533 3400 2.08 B29 3 TAPH 5 M E 142 Mineral spirits 50 ssps 1541 2673 2632 1.73 B30 31 31PH 5 M E 145 Mineral spirits 50 ssps 1640 2783 2611 1.70 B31 31 31PH 5 M E 145 Mineral spirits 50 ssps 1640 2783 2611 1.73 B32 33 30 5 M E 145 Mineral spirits 50 ssps 1523 2744 1.73 B32 5 M E 145 Mineral spirits 50 ssps 1172 2174 1.73 B33 33 5 M E 145 Mineral spirits 50 ssps 1172 2174 202	B25	3 TAPH	4 ME	142 Cypar®-C9	10	sdss	1768	3414	3206	1.93	67
B27 21APH 5.4 ME 142 Cypar®-C9 10 ssps 1693 3533 3400 2.08 B28 31APH 5.4 ME 142 Cypar®-C9 50 ssps 1253 3961 1.85 B29 31APH 5 ME 142 Cypar®-C9 50 ssps 1261 2673 2532 1.73 B29 31APH 5 ME 145 Mineral spirits 50 ssps 1640 2783 2611 1.73 B30 31APH 5 ME 145 Mineral spirits 50 ssps 1640 2783 2611 1.73 B31 313 31BPH 5 ME 145 Mineral spirits 50 ssps 1523 2673 2474 1.73 B32 445 FMI 5 ME 145 Mineral spirits 50 ssps 1523 2742 1.73 B32 5.5 TBPH 5 ME 145 Mineral spirits 50 ssps 353 2629 2474 1.73 B33 5.5 TBPH 5 ME 145 Mineral spirits 50 ssps 1129 2174 202	B26	3 TAPH	3 ME	142 Cypar®-C9	10	SS	2086	4324	4043	2.07	67
B28 31APH 3 ME 142 Cypar ^a .C9 50 ssps 2293 4255 3961 1.85 B29 ⁴ 3 TAPH 5 ME 145 Minercl spirits 50 ssps 1541 2673 2532 1.73 B30 ⁴ 3 TAPH 5 ME 145 Minercl spirits 50 ssps 1640 2783 2611 1.70 B31 3 TAPH 5 ME 145 Minercl spirits 50 ssps 1640 2783 2611 1.73 B31 3 TBPH 5 ME 145 Minercl spirits 50 sps 1523 2629 2474 1.73 B32 46 145 Minercl spirits 50 sps 1523 2629 2474 1.73 B33 5.5 TBPH 5 ME 145 Minercl spirits 50 sps 1129 2126 1987 1.86 B33 5.5 TBPH 5 ME 145 Minercl spirits 50 sps 1172 2174 2002 1.86 In thirdry, chain transfer agent and solvent are based on the total monomer weight. 50 sps 2174 2002 <t< td=""><td>B27</td><td>2 TAPH</td><td>5.4 ME</td><td>142 Cypar®-C9</td><td>10</td><td>sdss</td><td>1693</td><td>3533</td><td>3400</td><td>2.08</td><td>67</td></t<>	B27	2 TAPH	5.4 ME	142 Cypar®-C9	10	sdss	1693	3533	3400	2.08	67
B29 ⁴ 3 TAPH 5 ME 145 Minercl spirits 50 sps 1541 2673 2532 1.73 B30 ⁴ 3 TAPH 5 ME 145 Minercl spirits 50 sps 1640 2783 2611 1.70 B31 3 TAPH 5 ME 145 Minercl spirits 50 sps 1640 2783 2611 1.70 B31 3 TBPH 5 ME 145 Minercl spirits 50 sps 1523 2629 2474 1.73 B32 460 5 TBPH 5 ME 145 Minercl spirits 50 sps 1129 2126 1987 1.86 B33 5.5 TBPH 5 ME 145 Minercl spirits 50 sps 1172 2174 2002 1.86 B33 5.5 TBPH 5 ME 145 Minercl spirits 50 sps 1172 2174 2002 1.86 I > Addition fine: 3.5 fn 5 ME 145 Minercl spirits 50 sps 1172 2174 2002 1.86 (b) Addition fine: 3.5 fn 5 Me 5 Me 145 Minercl spirits 50	B28	3 TAPH	3 ME	142 Cypar®-C9	50	sdss	2293	4255	3961	1.85	06
B30 ⁴	B29 ^f	3 TAPH	5 ME	145 Mineral spirits	50	sdss	1541	2673	2532	1.73	06
B31 31BPH 5 ME 145 Mineral spirits 50 sps 1523 2629 2474 1.73 B32 322 5 ME 145 Mineral spirits 50 sps 1129 2126 1987 1.88 B33 333 5 ME 145 Mineral spirits 50 sps 1172 2174 2002 1.86 B33 5 Me 145 Mineral spirits 50 sps 1172 2174 2002 1.86 Col The wf% of initiator, chain transfer agent and solvent are based on the total monomer weight. 50 sps 1172 2174 2002 1.86 (a) The wf% of initiator, chain transfer agent and solvent are based on the total monomer weight. 50 sps 1172 2174 2002 1.86 (b) Addition fitner 3.5 fr. (b) The synch sets resine were directly determined after the acrylic resins were separated from solvent. 2174 2002 1.86 (c) The NMM of the sps resine were directly determined after the acrylic resins were separated from solvent. 2174 2002 1.86 (d) The symbol "ssort means solvent-swollen. (e) The symbol "ssort means solvent-swollen. 2002 1.86 </td <td>B30^f</td> <td>3 TAPH</td> <td>5 ME</td> <td>145 Mineral spirits</td> <td>50</td> <td>sdss</td> <td>1640</td> <td>2783</td> <td>2611</td> <td>1.70</td> <td>06</td>	B30 ^f	3 TAPH	5 ME	145 Mineral spirits	50	sdss	1640	2783	2611	1.70	06
B32	B31	3 TBPH	5 ME	145 Mineral spirits	50	sdss	1523	2629	2474	1.73	06
B33 5.5 TBPH 5.ME 145 Mineral spirits 5.0 ssps 1172 2174 2002 1.86	B32	4.5 TBPH	5 ME	145 Mineral spirits	50	sdss	1129	2126	1987	1.88	06
 (a) The wr% of initiator, chain transfer agent and solvent are based on the total monomer weight. (b) Addition time: 3.5 hr. (c) The NWM of thes size restras were directly determined after the acrylic resins were separated from solvent. (d) The symbol "sps" means semi-solid phase separated with a solvent layer on the restn. (e) The symbol "ss" means solvent-swollen. 	B33	5.5 TBPH	5 ME	145 Mineral spirits	50	sdss	1172	2174	2002	1.86	06
 (b) Addition time: 3.5 hr. (c) The NMM of the sists were differ the acrylic resins were separated from solvent: (d) The symbol "spss" means semi-solid phase separated with a solvent layer on the resin. (e) The symbol "ss" means solvent-swollen. 	(a) The wt% oi	f initiator, chain transfer	agent and solvent are bas	ed on the total monomer weig	aht.						
(c) The symbol space means semi-solic process and the assignment of the symbol space of the symbol "space" means some solic process and space of the symbol "space" means solvent-swollen. (e) The symbol "space means solvent-swollen.	(b) Addition ti	ime: 3.5 hr. vf tha sens rasins wara di	יייייי) און אין אין אין אין אין אין אין אין אין אי	v acondio resins were senarated	from colviant						
(e) The symbol "ss" means solvent-swollen.	(d) The symbo	ol "ssps" means semi-sol	id phase separated with a s	solvent layer on the resin.							
	(e) The symbo	ol "ss" means solvent-sw	ollen.								

Table 3—Viscosity of Selected Acrylic Resins in Comparison with their Molecular Weight and Molecular Weight Distribution

Acrylic Resins	Mn	Mw	Mz	D	Viscosity (mPa.s, 25 \pm 1°C, 3 rpm, 80% NVM in MEK
	700	1200	00.42	1 70	1045
Ы	/28	1300	2043	1.78	1045
B13	1424	3166	6818	2.22	7039
B14	1120	1970	2941	1.76	2907
Вб	1349	2532	3898	1.87	4011
B11	1466	2780	4329	1.89	4212
B22	1391	2674	4127	1.92	4229
B29	1541	2673	4060	1.73	4059
B31	1523	2629	3970	1.73	4339
B32	1129	2126	3400	1.88	3655
Benchmark ^a	1233	2498	4160	2.03	6047
(a) Joncryl J-920					

INITIATOR TYPE AND CONCENTRATION: Based on the results of Series A, 3 wt% of TAPH was used in most of the experiments in Series B. For comparison, TBPH was used in runs B31–B33. There was no detectable difference between the initiators—compare runs B29 and B30 (replicas) with B31.

The initiator concentration was varied in runs B31–B33. As predicted by polymerization theory⁶ and expected from common experience, increasing initiator concentration decreases M_n , although the difference between products B32 and B33 was small.

CHAIN TRANSFER AGENT CONCENTRATION AND TYPE: Gray⁸ showed that hydroxy functional mercaptan chain transfer agents effectively control the molecular weight of acrylic oligomers. Comparison of runs B3 with B5, of B8 with B11, and of B15 with B17 show similar effects in our process. 1-Dodecanethiol, 1-octanethiol and 2mercaptoethanol were used in B9, B10 and B6; the differences in M_n of the products can be attributed to differences in the molecular weights of the chain transfer agents. Functional chain transfer agents, such as 2mercaptoethanol were used in this study because they may improve film mechanical properties^{8,9} and despite their potential adverse effect on weatherability¹⁰ (see Discussion Section). Of course, M_n and M_w increase as concentrations of initiator and chain transfer agent are reduced.⁶ In most experiments, as M_n and M_w increase, D also increases to a modest extent.

POLYMERIZATION TEMPERATURE: Since most of the experiments were performed in refluxing solvent, it is difficult to unequivocally separate the effect of solvent composition from that of reaction temperature. Comparison of runs B6, B16, and B19–B24 suggest that lower polymerization temperatures give higher M_n and perhaps higher D, consistent with the results from Series A. The most directly comparable resins, B3, B4, and B8, suggest that decreasing polymerization temperature increases M_n but has little effect on D.

A concern about reaction temperature was the fact that these polymerizations were effected at temperatures above the boiling points of one (MMA bp = 100° C) or more (styrene bp = 144° C) of the monomers. In general, oligomer yields were 98% or higher, indicating minimal loss of these monomers by evaporation. Only about 0.2% of unreacted monomers remain in the product. Use of an efficient reflux condenser, a slow nitrogen flow, and the monomer-starved conditions are sufficient to minimize monomer losses.

TYPE AND AMOUNT OF SOLVENT: Perusal of the data in *Table* 2 suggests that there is little difference between the polydispersities (D) produced by solution polymerization and separation polymerization. For example, with a particular composition, solution polymerization in xylene (run B16–B18) gave D of 1.69 (at $M_n = 8200$) to 2.05 (at $M_n = 2150$) while separation polymerizations (runs B20–B24 and B29–B31) gave D in the range 1.70 to 2.16. Generally, D increases as M_n increases, but note that separation polymerized resins B30 and B31 have D = 1.70 – 1.73, at $M_n = 1540 – 1640$, while the commercial benchmark resin has D = 2.02 at $M_n = 1230$.

The data in *Table* 2 suggest that solvents used for separation polymerization can be ranked for value in yielding low D in approximately the following order: Mineral spirits ~ Cypar-9 > SC-100 > Isopar-G > Cypar-7 > Isopar-E. Minimum D produced in these solvents is 1.87, 1.92, 1.95, 2.02, 2.16, and 2.78, respectively.

It is difficult to discern a clear-cut pattern relating boiling points or compositions of these solvents to their performance in reducing D. Mineral spirits are rich in isoparaffins, while Cypar-9 contains 99% cycloparaffins. These two solvents appear to be attractive choices for further research on separation polymerization.

In separation polymerization experiments, the amount of solvent was varied from 10 to 50%. This change appears to have little (compare B26 with B28) or no (compare B20 with B21) influence on M_n and D of the products. The solvent level also seemed to have little influence on D of the products of solution polymerization; direct comparisons of M_n are not possible.

UNREACTED MONOMERS: To determine the free monomer content in the acrylic polyols synthesized with either mineral spirits or Cypar-9 as the solvent, we ran GC/MS experiments for acrylic resin B6 with phase separation of the upper layer (phase rich in solvent) and the bottom layer (phase rich in resin), and acrylic resin B26 without phase separation (solvent-swollen) because only 10 wt% solvent was used. For acrylic resin B6, the bottom layer contains 129 μ g/g of MMA, 926 μ g/g of EA, and 599 μ g/g of HEMA; Sty could not be measured due to peak overlap with the solvent (MAK) used to dissolve the resin. The total weight of the free monomers in the acrylic polyol's mass does not exceed 2000 μ g/g, which means that the acrylic resin contains less than 0.20 wt% of free monomers. The mineral spirits upper layer contains 704 μ g/g of MMA, 449 μ g/g of EA, and 339 μ g/g Sty; no HEMA was detected. Absence of HEMA was

confirmed by measurement of the –OH number of the upper layer as zero. Thus, the upper layer decanted from resin B6 contained 0.15% free monomers. Acrylic resin B26, from which no solvent was decanted, contains $689 \,\mu g/g$ of MMA, $2665 \,\mu g/g$ EA, $300 \,\mu g/g$ HEMA, and $640 \,\mu g/g$ of Sty for a total of 0.42% free monomers.

SOLVENT RECYCLE: The possibility of reusing the solvent-rich layer, which can be readily separated from the acrylic resins, was investigated. The mineral spirits-rich layer decanted from resin B6 was used to prepare another batch of B6 under the same. About 10% of fresh mineral spirits was added to replace losses. The M_n and D of the product were 1467 and 2.04, respectively, compared to 1349 and 1.87 for the product made with fresh mineral spirits. Multiple experiments would be needed to determine whether repeated use of recycled mineral spirits degrades the product.

Viscosities and Glass Transition Temperatures of Series B Acrylic Resins

The viscosity and glass transition temperature (T_{σ}) of selected resins made by separation polymerization was compared to the benchmark resin and to a resin of similar composition made by solution polymerization in xylene. To make valid comparisons, it is necessary to equalize the solvent type and level and, for T_g studies, the recent solvent history of the resins. Solvent was decanted from the acrylic resins made by separation polymerization, and the volatile content of the resins was reduced to < 1% by concentrating them in a rotary evaporator at 70°C for five hours under water aspirator pressure. For viscosity studies, the NVM was adjusted to 80% by adding MAK to obtain a homogeneous solution. The benchmark resin was used as received; it is already at 80% NVM in MAK. Viscosity and molecular weight data are summarized in Table 3.

When molecular weights were similar, our acrylic resins with D < 2.0 had 28 to 52% lower viscosity than "Joncryl 920" at the same solids content. An indication

of the great sensitivity of viscosity to D is shown by comparing resin B13 ($M_n = 1424$, D = 2.22) with other resins, for example B29 ($M_n = 1541$, D = 1.73); viscosity of B13 is 73% higher. This result confirms the importance of minimizing D for high-solids coatings. Another aspect of this result is that M_w (3166) and M_z (6818) of B13 are higher than M_w (2673) and M_z (4060) of B29.

Differential scanning calorimetry (DSC) was performed on two instruments. The T_g of resin B6 was +5°C (Seiko) and +1°C (TA), while T_g of the benchmark resin was -3°C (Seiko) and -6°C (TA). These results show that T_g of resin B6 is about 7 to 8°C higher than that of the benchmark resin and rules out the possibility that the lower viscosity of the experimental resins can be explained by T_g effects.

Clear Coatings Made from Series B Acrylic Resins

A preliminary study of high-solids coatings made from Series B acrylic resins was carried out, and results were compared with coatings made from Joncryl 920. These coatings were two-package (two-component, 2K) acrylic polyurethanes designed for air dry or moderate bake applications. Three acrylic resins were studied, B30, in which the initiator was TAPH, B31, a similar resin made with TBPH as the initiator, the benchmark resin. The crosslinkers were hexamethylene diisocyanate homopolymer (HDI-ICU), and isophorone diisocyanate homopolymer (IPDI-ICU). Other factors being equal, films made from HDI-ICU will be considerably softer and more flexible than films made from IPDI-HCU because HDI has a flexible, aliphatic structure while IPDI has a relatively rigid, cycloaliphatic structure. It is common in industry to blend these crosslinkers to achieve the desired balance of hardness and flexibility.

Properties of clearcoats made from these resins and crosslinkers are shown in *Tables* 4 through 7. Viscosity of these formulations (without catalyst) was adjusted to 0.1 Pa.s by addition of MAK and NVM was measured. As

	Air-Dried Clearcoats		
Acrylic polyol (Initiator) B30 TAPH	B31 TBPH	B31 TBPH	Commercial Benchmark
-OH number	165	165	140
DBTDL (wt%) 0.05	0.05	0.05	0.05
FC-430(wt%) 0.25	0.25	0.25	0.25
-NCO/-OH equiv. ratio 1.1/1	1.1/1	1.1/1	1.1/1
NVM (%)	80	90	80
Wt% solvent at 0.1 Pa.s	20.3%	—	21.4%
Film thickness (mils) 1.4-1.8	1.8-2.0	1.8-2.0	1.6-1.8
MEK resistance, dbl. rubs	>200	>200	165
Pencil hardness HB	HB	HB	HB
Adhesion 4B	4B	4B	1B
Impact resistance (Dir/Rev) 160/160	160/160	160/160	160/160
Elongation (%)>32	>32	>32	>32
	Baked Clearcoats (120°C for 30 m	in)	
MEK resistance, dbl. rubs	>200	>200	165
Pencil hardness H	Н	Н	4B
Adhesion OB	1B	1B	OB
Impact resistance (Dir/Rev) 60/0	80/40	80/40	0/0
Elongation (%) 0*	>32	>32	Oa

Table 5—Coatings Properties of Clearcoats

		Air-Dried Clearc	oats
Acrylic polyol (Initiator)	B30 (TAPH)	B31 (TBPH)	Commercial Benchmark
Film thickness (mils)	1.7-1.9	1.8-1.9	1.6-1.8
MEK resistance, dbl. rubs	40	50	>200
Pencil hardness	F	F	HB
Adhesion	5B	5B	1B
Impact resistance (Dir/Rev)	20/20	20/20	0/0
Elongation (%)	>32	>32	0 ^a
	В	aked Clearcoats (120	0°C for 30 min)
MEK resistance, dbl. rubs	>200	>200	>200
Pencil hardness	6H	6H	HB
Adhesion	3B	3B	0B
Impact resistance (Dir/Rev)	0/0	0/0	0/0
Elongation (%)	Cracked at 32	Cracked at 32	Cracked at 32

expected from their lower viscosity, formulations based on B30 and B31 had higher solids, but the difference was much smaller than the differences in resin viscosity. Even at 90% NVM, coatings made from resin B31 had sufficiently low viscosity that they could easily be cast on panels. Film mechanical properties of the clearcoats made from B30 and B31 were closely similar. Their properties were equal, and in some respects better than those of coatings made from the benchmark resin. Evaluations were made on matte cold-rolled steel panels, a substrate to which some of acrylic coatings tend to have poor adhesion. In general, adhesion of coatings made from B30 and B31 was equal to or better than those made from the benchmark resin. Part of the poor performance of the benchmark coatings in physical tests may result from poor adhesion. As expected, properties ranging from soft and flexible to hard and brittle are accessible by using HDI-ICU (Table 4) or IPDI-ICU (Table 5.) The data in Tables 6 and 7 illustrate the intermediate properties attainable by using blends of these crosslinkers.

DISCUSSION

Intensive research has been underway for many years to find ways to synthesize acrylic polymers and copolymers with polydispersity much lower (D = 1.2 or less) than is attainable by conventional free-radical polymerization (theoretical lower limit is D = 1.5). Processes that have achieved some degree of laboratory success have included anionic polymerization,¹¹ group transfer polymerization,¹² mediated living free-radical polymerization,^{13,14} atom transfer radical polymerization,¹⁵ and many variations of these methods. These methods give low polydispersity because they have different kinetic characteristics than conventional radical initiated polymerization—the rate of propagation is slower than the rate of initiation, while with unmediated radical polymerization, the rate of propagation is much faster than the rate of initiation. However, none of the newer methods has yet proved capable of economically producing functional acrylic copolymers, such as oligomeric polyols. Thus, for the foreseeable future, the coatings industry will probably rely on unmediated free-radical polymerization for

production of most of its acrylic polyols, and the goal of obtaining the lowest possible D remains an important one.

There are conflicting reports in the literature about which initiators can be expected to give acrylic resins with the lowest polydispersity. Kamath and Sargent reported that *t*-amyl peroxides give lower polydispersity than *t*-butyl counterparts.¹⁶ This result is supported by theoretical expectations, since *t*-amyl peroxides decompose to produce ethyl, rather

than methyl, radicals as the initiating species, and the less reactive ethyl radicals are, in theory, less likely to cause side reactions such as branching. More recently, Myers published data, obtained under different conditions, indicating that the two types of initiators give about the same polydispersity.¹⁷ In our experiments, the two initiators performed the same within experimental error in both Series A and Series B. In Series A, 2,2'azobis(2-methylbutyronitrile) also performed similarly, while *bis*(1,1-dimethylethyl) peroxide gave broader polydispersities. Factors such as initiation rate, cost, toxicity, availability, and probable effect on weatherability are also involved in the selection of initiators.

Polymerization theory predicts a linear decrease in M_n as chain transfer agent molar concentration increases for cases where the reactivity of the chain transfer agent is relatively high.⁶ Gray confirmed this theory for synthesis of acrylic oligomers using a variety of functional mercaptan chain transfer agents,⁸ and our results fit the same pattern. For most experiments 2-mercaptoethanol was chosen because it effectively controls molecular weight and it has an additional advantage: it introduces a hydroxyl functional group on the end of each chain it initiates. Theoretical calculations predict that use of 2mercaptoethanol will substantially decrease the population of chains in the acrylic resin that have less than two hydroxyl groups.⁹ In theory, this should improve film mechanical properties, although there may be adverse effects on weatherability whenever mercaptan chain transfer agents are used.¹⁰

In 80% solutions in MAK, the viscosities of Series B resins are 28 to 52% lower than the benchmark commercial resin. The difference cannot be explained by T_g effects, since T_g of resin B6 is actually 7 to 8°C higher than that of the benchmark resin. Remaining possibilities are the lower polydispersities of the B Series resins, differences in branching levels, or some unexplained structural or solvent-interaction differences. Further research would be needed to explain this difference. It seems almost certain that reduced polydispersity helps reduce resin viscosity. When clearcoats are formulated from resin B6 and the benchmark resin, the viscosity differences are much smaller. The fact that these resins have

lower viscosity than the benchmark resin despite having higher M_n and T_g suggests that factors other than T_g , M_n , and D may have a strong influence on viscosity. These factors probably include differences in oligomer structure, but additional study would be needed to establish what the specific differences are.

Perusal of the data in Table 3 suggests that, for Series B resins having M_n between 1100 and 1600, there is a good correlation of viscosity with M_w and M_z. The benchmark resin, of course, does not correlate with the Series B resins, having a much higher viscosity than expected for its molecular weight. As indicated previously, differences in Tg cannot account for this difference. Presumably, differences in resin structure explain it; the effect of such differences would be an interesting topic for further investigation.

The solution and separation polymerization processes both gave resins having polydispersity (D) of about 1.7. However, solution polymerization gave D as low as 1.7 only when M_n was 800–850 (resins B15–B16); it gave D = 1.87 when M_n was 1520 (resin B17). In contrast, separation polymerization gave D = 1.70 - 1.73 when M_n was 1520–1640 (resins B30 and B31). Thus, it may prove an attractive alternative to solution or bulk polymerization. 60% is about the maximum with solution polymerization, (2) the resins can be dissolved in different solvents or solvent mixtures depending on what coating production and application characteristics are required, (3) the aliphatic solvents used in separation polymerization can be recycled, (4) if desired, resins synthesized by separation polymerization can be shipped in concentrated form, (5) separation polymerization is very easily controlled, and modest variations in polymerization temperature and the amount of solvent seem to have little affect on the structure and properties of the final resins, (6) the solvents used in the new method are less expensive than xylene and oxygenated solvents, (7) polymerization can be effected in solvents which are less likely than aromatic or oxygenated solvents to undergo side reactions such as chain transfer or transesterification; it is speculated that this may be advantageous for weatherability, (8) when the aliphatic solvent layer is decanted, it may take with it a small fraction of undesired components of the resin, such as unreacted monomer and low-molecular weight, non-functional oligomers, a potential advantage for film mechanical properties and weatherability, and (9) separation of the polymer during polymerization may minimize side reactions such as chain transfer

With separation polymerization, polymer characteristics are essentially the same whether the process is performed at 50 or 90 wt% solids. At 50 wt%, most of the solvent separates as an upper layer, which can be easily removed and potentially recycled. At 90 wt% no solvent layer separates. Either way, a concentrated product containing 10 wt% or less of aliphatic or cycloaliphatic solvent is obtained. It can be made pumpable by mild heating. Residual aliphatic or cycloaliphatic solvent can be removed by vacuum stripping before dilution or simply left in the product. Removal of the solvent layer also removes about half the unreacted monomer, and there is a possibility that it could also remove other undesirable contaminants.

At the outset of this study, we envisaged potential advantages of the separation polymerization process in comparison with conventional solution polymerization methods: (1) resins can be produced at very high solids, (>90%) while

		Air-Dried Clearcoats	
Acrylic polyol (Initiator) E	330 (TAPH)	B31 (TBPH)	Commercial Benchmark
Film thickness (mils)	1.6-1.8	1.8-2.0	1.6-1.8
MEK resistance, dbl. rubs	>200	>200	>200
Pencil hardness	B	B	HB
Adhesion	4B	4B	0B
Impact resistance (Dir/Rev)	80/80	80/80	5/5
Elongation (%)	>32	>32	0°
		Baked Clearcoats (120°C for	30 min)
MEK resistance, dbl. rubs	>200	>200	>200
Pencil hardness	H	H	B
Adhesion	5B	5B	OB
Impact resistance (Dir/Rev)	60/40	60/40	0/0
Elongation (%)	0°	O°	0°

(Mixed HDI-ICU/IPDI-ICU Crosslinkers, Equivalent ratio: 3/1; Formulations essentially the same as in Table 4.) (a) The film delaminated during testing.

Table 7—Properties of Clearcoats

		Air-Dried Clearcoats	
Acrylic polyol (Initiator)	330 (TAPH)	B31 (TBPH)	Commercial Benchmark
Film thickness (mils)	1.7-1.8	1.8-1.9	1.6-1.8
MEK resistance, dbl. rubs	>200	>200	>200
Pencil hardness	F	F	HB
Adhesion	5B	5B	OB
Impact resistance (Dir/Rev)	60/40	60/40	0/5
Elongation (%)	>32	>32	0ª
	Вс	iked Clearcoats (120°C f	or 30 min)
MEK resistance, dbl. rubs	>200	>200	>200
Pencil hardness	2H	2H	В
Adhesion	5B	5B	OB
Impact resistance (Dir/Rev)	10/0	10/0	0/0
Elongation (%)	0ª	0ª	0ª
(Mixed HDI-ICU/IPDI-ICU Crosslinkers Fo	uivalent ratio: 1/1: 6	Formulations	

essentially the same as in Table 4.)

(a) The film delaminated during testing

to polymer. Of these potential advantages, 1-6 were demonstrated in this study, but 7-9 remain speculative.

Having established a process, it is a simple matter to adjust oligomer characteristics. Mn can be adjusted by altering the level of initiator and chain transfer agent; presumably the chain transfer agent could be eliminated, if desired, for a particular application. Tg and the hydroxyl number can be adjusted in predictable ways by changing the proportions of monomers. Thus, it is possible to adjust the final coating properties through a wide range to target specific requirements. Versatility is further enhanced by the possibility of using mixed crosslinkers. The hydroxyl equivalent weight of oligomers B30 is 340 g/equiv., while the hydroxyl equivalent weight of the benchmark is 400 g/equiv. This important factor, which affects both coating film properties and economics, can be equalized simply by changing the monomer proportions.

CONCLUSIONS

This study has shown that both conventional solution polymerization and separation polymerization are capable of producing oligomeric acrylic polyol resins with polydispersities (D) of about 1.7 with the monomer lineup used in Series B. Only separation polymerization produces such a low polydispersity when M_n is about 1600. Resins made by separation polymerization have substantially lower solution viscosities than the commercial benchmark acrylic resin, which has $M_n = 1230$ and D = 2.03. In preliminary tests, the best of the Series B resins gave coating film properties that were, on balance, superior to those obtained with the benchmark resin. Resin characteristics such as Tg and Mn can be easily adjusted by changing the monomer line-up. Thus, the primary goal of the project has been achieved.

It is widely accepted that T_g , M_n , and polydispersity (D) have a substantial effect on the viscosity of acrylic oligomers in concentrated solution. The data in this study show that additional factors are also at work, and may have substantial influence on viscosity. These factors are probably related to the detailed structure of the oligomers, but at this stage we can only speculate as to what they may be.

ACKNOWLEDGEMENTS

We thank Ford Motor Company and the NSF Coatings Research Center at Eastern Michigan University, Michigan Molecular Institute and North Dakota State University for financial support of this research. We thank Ms. Yuhong Hu of Pennsylvania State University for performing DSC measurements.

References

- (1) Wright, A.J., "Hydroxyl Functional Acrylics for VOC Compliance," *Eur. Coat. J.*, 696 (October 1996). Boatwright, J.H., "Chicago Society Defines 'Oligomer'," JOURNAL
- (2)OF COATINGS TECHNOLOGY, 52, No. 664, 124 (1980).
- (3)Wicks, Jr., Z.W., Jones, F.N., and Pappas, S.P. Organic Coatings: Science and Technology, 2nd Ed., John Wiley and Sons, Wiley-Interscience, New York, 21, 1999.
- Gerlock, J.L., Mielewski, D.F., Bauer, D.R., and Carduner, K.R., (4)"End Groups in Acrylic Copolymers. 2. Mechanisms of Incorporation of End Groups and Relationship to Photoinitiation Rates," Macromolecules, 21, 1604 (1988).
- (5) Ji, C., Huang, Z., Shen, W., Diakoumakos, C.D., and Jones, F.N., "Preparation and Properties of Mar Resistant Coatings by Crosslinking Isophthalate-Based Oligoesters with HMMM," Polym. Mater. Sci. Eng., 78, 252 (1998).
- (6) Munk, P., Introduction to Macromolecular Science, John Wiley & Sons, New York, 145-155, 1989.
- Janowicz, A.H. and Melby, L.R., "Cobalt(II) Chelates as Chain (7)Transfer Agents in Free Radical Polymerization," U.S. Patent 4,680,352 (1987).
- Gray, R.A., "Preparation of Acrylic Oligomers for High-Solids (8)Coatings Using Hydroxy-Functional Mercaptan Chain Transfer Agents," JOURNAL OF COATINGS TECHNOLOGY, 57, No. 728, 83 (1985).
- O'Driscoll, K.F., "Compositional Heterogeniety in Low Molecular Weight Copolymers as Revealed by Monte Carlo Simulations," Journal of Coatings Technology, 57, No. 705, 57 (1983).
- (10) Spinelli, H.J., "The Role of Functionality in Low Molecular Weight, High Solids Acrylic Resins," Org. Coat. Appl. Polym. Sci., 47, 529 (1982).
- (11) Haggard, R.A. and Lewis, S.N., "Methacrylate Oligomers via Alkoxide-Initiated Polymerization," Prog. Org. Coat., 12, 1 (1984).
- (12) Webster, O.W., "Group Transfer Polymerizations," Polym. Mater. Sci. Eng., 80, 280 (1999)
- (13) Georges, M.K., "An Overview of the Nitroxide-Mediated Living-Radical Polymerization Process," Polym. Mater. Sci. Eng., 80, 283 (1999)
- (14) Hawker, C.J., Elce, E., Dao, J., Volksen, W., Russell, T.P., and Barclay, G.G., "Well-Defined Random Copolymers by a "Living" Free-Radical Polymerization Process," Macromolecules, 29, 2686 (1996)
- (15) Wang, J-L., Grimaud, T., and Matyjaszewski, K., "Kinetic Study of the Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate," Macromolecules, 30, 6507 (1997)
- (16) Kamath, V.R. and Sargent, J.D., Jr., "Production of High-Solids Acrylic Coating Resins with t-Amyl Peroxides: A New Way to Meet VOC Requirements," JOURNAL OF COATINGS TECHNOLOGY, 59, No. 746, 51 (1987).
- (17) Myers, G.G., "Initiators for High-Solids Polyacrylates Resins: Selection Guidelines and Performance Review," JOURNAL OF COAT-INGS TECHNOLOGY, 67, No. 841, 31 (1995).