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T
he traditional approach to experimentation—often 
referred to as the “scientific method”—requires chang-
ing only one factor at a time (OFAT). Unfortunately, 

the relatively simplistic OFAT approach falls flat when 
users are faced with factor or component interactions, for 
example, the combined impact of time and temperature on 
a process, or two reactants in a mixture. Because inter-
actions abound in the coatings industry, the multifactor 
and multicomponent test matrices provided by the design 
of experiments (DOE) approach appeal greatly to process 
engineers and formulators.1 However, carrying out DOE 
correctly requires that runs be randomized whenever 
possible to counteract the bias that may be introduced by 
time-related trends, such as aging of materials, increasing 
humidity, and the like.

But what if complete randomization proves to be so 
inconvenient that it becomes impossible to run a statisti-
cally designed experiment? In this case, a specialized form 
of design called “split plot” becomes attractive, because 
of its ability to effectively group hard-to-change (HTC) 
factors.2 A split plot accommodates both HTC factors, for 
instance, the conditions in an electrostatic powder-coating 
chamber, and those factors that are easy to change (ETC), 
such as the part precleaning and preparation.

Split-plot designs originated in the field of agriculture, 
where experimenters applied one treatment to a large area 
of land, called a whole plot, and other treatments to smaller 
areas of land within the whole plot, called subplots. For 
example, Figure 1 shows two alternative experiments that 
were carried out on six varieties of sugar beets (Number 1 
through 6) that were sown either early (E) or late (L) in the 
growing season:

• A completely randomized design in one field shown 
on the top row versus

• The bottom row where the whole plot (single field) 
has been split into two subplots (in this case, sown 
early vs late)
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FIGURE 1—Comparing a completely randomized experiment (top row) vs one that is divided into 
split plots (bottom row).3
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The split-plot layout made it far 
sweeter (pun intended) for the sugar- 
beet farmer to sow the seeds because of 
the grouping, since it was far easier to 
plant subplots early vs late, rather than 
doing it in random locations.

CASE IN POINT: THE USE  
OF A SPLIT PLOT IN AN  
INDUSTRIAL EXPERIMENT

DOE pioneer George Box developed a 
clever experiment that led to the discov-
ery of a highly corrosion-resistant coat-
ing for steel bars.4 Four different coat-
ings were tested (which is easy to do) 
at three different furnace temperatures 
(which is hard to change)—each of which 
was run twice to provide statistical 
power. The design that Box pioneered (a 
split plot) for this experiment is shown 
in Table 1 (results for relative corrosion 
resistance—the higher the better—are 
shown in parentheses). Note the bars 
being placed at random by position.

Observe in this experiment-design 
layout how Box made it even easier, in 
addition to grouping by temperature 
(i.e., “heats”), by increasing the fur-
nace temperature run-by-run and then 
decreasing it gradually. This was done 
out of necessity due to the difficulties 
of heating and cooling a large mass 
of metal. The saving grace, however, 
is that, although shortcuts like this 
undermine the resulting statistics when 
they do not account for the restrictions 
in randomization, the effect estimates 
remain true. Thus, the results can still 
be assessed based on subject mat-
ter knowledge (in terms of whether 
they indicate important findings). 
Nevertheless, if possible, it will always 

be better to randomize levels in the 
whole plots and, furthermore, reset 
them (i.e., turn the dial away and then, 
after allowing time for the system to 
equilibrate, put it back to the same 
value) when they have the same value, 
for example, between Groups 3 and 4 in 
this design.

In this case, as often happens, the 
resetting of an HTC factor (temperature) 
created so much noise in this process 
that in a randomized design it would 
have overwhelmed the ability to detect 
the effect of the coating. The application 
of a split plot overcomes this variability 
by grouping the heats (i.e., oven batches), 
thus, filtering out the temperature differ-
ences. Figure 2 tells the story.

The best corrosion resistance 
occurred for coating C4 at the highest 
temperature (see the tallest gray tower, 
located at the back corner of Figure 2). 
This finding—the result of the two- 
factor interaction aB between tempera-
ture (a) and coating (B), achieved signifi-
cance at p < 0.05 (that is, a level exceed-
ing 95% confidence). The main effect of 
coating (B) also emerged as statistically 
significant. If this experiment had been 
run in a completely randomized way, 
the p-values (to put it very simply, the 
probability on a 0 to 1 scale of results 
being caused by chance) for the coating 

effect and the coating-temperature 
interaction would have been roughly 
0.4 and 0.85, respectively—that is, not 
sufficient to be considered statistically 
significant. In his work, Box concludes 
by suggesting that coating chemists try 
even higher temperatures with the C4 
coating while simultaneously work-
ing at better controlling the furnace 
temperature. Furthermore, he urges the 
experimenters to work at understanding 
better the physiochemical mechanisms 
causing the corrosion of the steel. This 
really was the genius of George Box—his 
matchmaking of empirical modeling 
tools with his subject matter expertise.

COMBINED MIXTURE-PROCESS 
EXPERIMENTS MADE FAR  
EASIER

The ability of split plots to conveniently 
group runs makes them especially use-
ful for experiments that combine mix-
ture components with process factors, 
for example, trying various cake recipes 
at varying baking conditions. Combined 
designs come about very commonly in 
the coatings industry due to the opacity 
being a function not only of the ingredi-
ents (mixture) but also the application 
(process). For example, Chau and Kelly5 

FIGURE 2—In this effects graph, 3D bars show the impact of temperature (a) vs coating 
(B) on corrosion resistance—the higher the better. 
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TABLE 1—Using a Split-Plot Design to Increase the Corrosion Resistance 
of Steel Bars

GROUP
HEAT (°C) 

(WHOLE PLOTS)
POSITIONS (SUBPLOTS)

1 360 C2 (73) C3 (83) C1 (67) C4 (89)

2 370 C1 (65) C3 (87) C4 (86) C2 (91)

3 380 C3 (147) C1 (155) C2 (127) C4 (212)

4 380 C4 (153) C3 (90) C2 (100) C1 (108)

5 370 C4 (150) C1 (140) C3 (121) C2 (142)

6 360 C1 (33) C4 (54) C2 (8) C3 (46)

Designed Experiment  Hard-to-Change Factors
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studied the opacity of a printable coat-
ing material as a function of its three 
ingredients (two pigments and a binder) 
and the thickness at two levels. Figure 3 
pictures the structure of this combined 
design—a prism. The triangular ends 
define the mixture—ingredients X

1
, X

2
 

and X
3
; where the value of 1 signifies 

them in purest form at the apexes.6 
The process factor (Z) goes from low 
at left to high at right, coded as -1 to +1, 
respectively.

Complete randomization can be very 
daunting for researchers running com-
bined designs, because:

• A new blend must be prepared, 
even if the recipe listed in the 
experimental plan does not 
change.

• The process must be reset, even 
though all the factors remain at 
the same level in the design.

It is not often practical, or even possible, 
to perform an experiment in this way. 
Consider, for example, a kitchen scien-
tist mixing up a single three-ingredient 
cookie by the specified recipe (e.g., peanut 
butter, sugar, and egg) and then baking it 
all by itself per the process settings at time 
and temperature for that run. A more sen-
sible approach would be to mix a batch of 
cookies and then bake a tray of them, that 
is, make it a split-plot experiment with 
components being HTC. Figure 4 lays out 
this experiment design.

This experiment is comprised of six 
master batches—three that are richest 
in each ingredient at the corners of the 
triangles, and three binary blends along 
the centers of the edges. The order of the 
batches is randomized. Each batch gets 
baked off at four combinations of time 
and temperature per a random plan.

By allowing the grouping of blends, 
split plots make it far easier to run 

statistically designed experiments on 
the impact of various coatings formulas 
on their durability under varying envi-
ronmental conditions. This is just one 
example. Now that DOE software makes 
it easy to handle HTC factors or compo-
nents, many situations can be managed 
that could not in the past due to require-
ments for complete randomization.

CAVEATS

Split plots essentially combine two 
experiment designs into one. Thus, they 
produce both split-plot and whole-plot 
random errors. For example, the corro-
sion- 
resistance design discussed above intro-
duces whole-plot error with each furnace 
re-set, due to potential variation that can 
result from, for instance, operator error 
in dialing in the temperature, inaccurate 
calibration, changes in ambient condi-
tions, and so forth.7  Meanwhile, split-plot 
errors arise from bad measurements, 
variation in the distribution of heat 
within the furnace, differences in the 
thickness of the steel-bar coatings, and 
more.

This split-error structure creates com-
plications in computing proper p-values 
for the effects, particularly when depart-
ing from a full-factorial, balanced, and 
replicated experiment, such as the cor-
rosion-resistance case. If you really must 
use this route, be prepared for your DOE 
software to apply specialized statistical 
tools that differ from standard analysis.

Furthermore, you cannot expect that 
doing an experiment more conveniently 
will not come at a cost—nothing good 
comes free. The price you pay for taking 
advantage of split plots is the loss of 

power to pin down some effects on those 
HTC factors that are grouped, that is, 
not completely randomized.8

 

CLOSING THOUGHTS

Keep the power loss on HTC factor(s) 
in mind before settling for a split-plot 
design. Perhaps grouping HTCs for 
convenience may not be worth this 
cost—you would be better off taking the 
trouble to randomize the whole design. 
However, for many processes, running 
any experiment may become impossible 
if it requires certain factors, such as 
temperature, to be re-set and equili-
brated for each test run; the time and 
expense to do this becomes prohibitive. 
These are situations for which a split 
plot can come to the rescue. 
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FIGURE 3—Three-component mixture combined with 
one process factor.
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FIGURE 4—Split plot for grouping blends 
and then processing them.
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