

by Mary E. Koban DuPont Titanium Technologies*

Case Study

Using Six Sigma Tools to Evaluate Pigment Dispersant Demand Performance

A useful and relatively new methodology for reducing cost and improving quality is Six Sigma. Applying Six Sigma to product design and/or process control has been done on a routine basis. We would like to take this approach into the lab and offer the coatings formulator the same opportunity to explore the benefits of Six Sigma. Therefore, in this work, we focus on evaluating dispersant demand of four pigments using a Six Sigma approach. Specifically, we show how to define which parameters are important to measure, how to perform the measurements, analyze the data, and make conclusions regarding the relative difference in dispersant demand between the test pigments all with a Six Sigma data-driven approach. The goal of this work is to demonstrate how coatings formulators can find benefits in using Six Sigma tools. Then, the coatings formulator can expand with confidence the use of Six Sigma to other applicable formulating processes.

INTRODUCTION

From a methodology standpoint, Six Sigma is readily applied to processing plants where product quality and consistency are key production drivers. The well-defined step-by-step Six Sigma methodology lends itself to manufacturing facilities and the quest for reducing defects while maintaining product quality. However, Six Sigma is also a powerful methodology that can be applied to various aspects of many industries. Even though the coatings industry is mature, it is the author's opinion that this industry is prime for Six Sigma. Coatings formulators have always been keen to try new and novel methods to improve the current industry. Therefore, this work offers the coatings formulator the opportunity to see how Six Sigma can be applied to couple innovation with current good industry practice.

Presented at the 81st Annual Meeting of the Federation of Societies for Coatings Technology, November 12-14, 2004, Philadelphia, PA.

^{*}Chestnut Run Plaza 709-242, Wilmington, DE 19880-0709; 302.999.2692; Email: mary.e.koban@usa. dupont.com.

Business & Industry

Pigment is a major component of the coatings formulation. Properly using and gaining full value of the pigment is imperative in today's cost-conscious society where cost is balanced with performance. Dispersion is key to good pigment performance.¹ Poorly dispersed pigment can be directly related to poor coatings performance.² Therefore, the coatings formulator would like to evaluate pigment dispersion on a routine basis and in terms that relate to his/her practical needs. A typical industry method to evaluate pigment dispersion is the dispersant demand test. The information gained by performing the dispersant demand test can be related not only to pigment dispersion, but also used as an aid to determining the initial dispersant level needed in the coatings formula. Determining the correct dispersant amount required to adequately disperse a pigment leads to good formulating practice. Six Sigma is a tool that the coatings formulator can use to aid in this process.

SIX SIGMA

In this work, we use Six Sigma tools to determine dispersion performance of four TiO_2 pigments. Although we apply the Six Sigma methodology to understand the difference between pigments, this same methodology could easily be applied to understand performance aspects of other coatings raw materials or overall coatings product performance. Since this work concentrates on pigment evaluation, dispersion performance is selected as the key product attribute to be evaluated.¹

The first step is to understand the Six Sigma concept.³ Simply put, Six Sigma is a statistically based methodology that reduces variation in a product or process to less than 3.4 defects in one million parts. It is interesting to note that our common ideas of quality generally regard 99% capability, a three-sigma capability, as an extremely viable process. However, in day-to-day practice this would translate into an unacceptable tolerance. A three-sigma process applied to energy

would give about seven hours per month of downtime. Not many customers would be willing to accept this on a routine basis.

The improvement from three sigma to Six Sigma means the virtual elimination of defects in the short term. The process moves from 99.7% to about 100%. In the long term, the process moves from 93.3% to about 99.9997%.

Six Sigma's objective is to reduce variation, resulting in fewer defects. One of the main goals of Six Sigma is to derive immediate benefits from statistical analysis. It is

not uncommon for businesses to receive cost benefits from Six Sigma within a relatively short time period, on the order of months.⁴⁻⁶

The basic components of Six Sigma are to (1) *Define* the problem and relate it to the internal/external customer, (2) *Measure* how the process is performing and determine defects, (3) *Analyze* the root causes for poor performance/defects, (4) *Improve* the process and, (5) *Control* the problem so it does not recur.⁷ This is called the DMAIC Process.⁷ The DMAIC process is a data-driven methodology that can be used virtually everywhere to improve a product or a process, but the work reported here takes only certain elements from Six Sigma and applies them to understand differences in dispersion performance between the selected pigments.

IDENTIFYING KEY PARAMETERS

The first tool that can be used quite readily by the coatings formulator is the SIPOC or high-level process map. It is an important tool that shows the formulator the large overview of the project. In general, the coatings formulator would like to see what his/her process

Figure 2—General dispersion performance SIPOC.

Figure 3—Cause and effect matrix.

Importance to Customer		9	3	9	
	Output Number	1	2	3	
Process Input (cause)		Amt of Dispersant	Viscosity	Time for Pigment to Disperse	TOTAL
TiO2 Type		9	9	9	189
Dispersant Type		9	9	9	189
Weight Percent Solids of Dispersion		6	6	9	153
Dispersing Test Equipment	0	3	9	90	
Operator	0	0	9	81	
TiO2 Lot	3	3	3	63	
Viscosity Test Equipment		0	9	0	27
Scales		3	0	0	27

would entail to evaluate dispersion performance of several pigments. A generic process map is shown in *Figure* 1 with a more relevant map given in *Figure* 2.

From the SIPOC, the formulator gets a large overview of what resources are required to complete the dispersion performance evaluation. The SIPOC gives direction to the formulator as to what information needs to be collected to get his/her desired outcome—output Y. If one thinks of the output Y as a function of input variables, X, then one can use a process to determine the measurable inputs needed. This connection between inputs and outcomes is highlighted in the Process section of the SIPOC in *Figure* 1. Therefore, one starts by defining possible Xs.

It may not be obvious what the Xs and Ys are for in our dispersion performance example. However, another Six Sigma tool can be used to help determine the input variables or Xs for our desired Y of dispersion performance. The cause and effect matrix can help determine which potential Xs are important for a given Y. Here is an example of the matrix (*Figure* 3) that a formulator could use for determining the potential Xs that are im-

Data Collection Plan											
Data Collection "To collect data	Data Collection Objective: "To collect data to <u>Measure Dispersant D</u> (purpose, goa					for the	Four Sam		ents ^{uct)}	27 •	
	What to M	easure			Develop C	peration	al Definit	ions and	How to N	/leasure	
				Operational De	efinition		Samplii	ng Plan		Co	llection
Measure	Type Measure	Type Data	Stratification	What	How	What	Where	When	How Many	Collection Method	Employee Name
Wt% Dispersant	Output	Continuous	Operator	Amt in grams	Mettler Scale	Dipsersant Amount Added	each sample	measure at time of addition	take readings after each addition and then take 4 readings after minimum viscosity reached	Manual	Operator 1
Viscosity	Output	Continuous	Operator	Amt in cps	Brookfield	cps reading	each sample	1 min after each addition	take readings after each addition and then take 4 readings after minimum viscosity reached	Manual	Operator 2
1											

Figure 4—Generic data collection plan.

Operator	TiO2	Lot	Replicate	Wt%Dis	Operator	TiO2	Lot	Replicate	Wt%Dis
01	SampleA	L1	R1	0.102	O2	SampleA	L1	R1	0.097
01	SampleA	L1	R2	0.121	O2	SampleA	L1	R2	0.111
01	SampleA	L1	R3	0.208	O2	SampleA	L1	R3	0.095
01	SampleA	L2	R1	0.154	O2	SampleA	L2	R1	0.090
01	SampleA	L2	R2	0.109	O2	SampleA	L2	R2	0.086
01	SampleA	L2	R3	0.126	O2	SampleA	L2	R3	0.132
01	SampleA	L3	R1	0.113	O2	SampleA	L3	R1	0.110
01	SampleA	L3	R2	0.162	O2	SampleA	L3	R2	0.136
01	SampleA	L3	R3	0.116	O2	SampleA	L3	R3	0.102
01	SampleB	L1	R1	0.180	O2	SampleB	L1	R1	0.211
01	SampleB	L1	R2	0.177	O2	SampleB	L1	R2	0.181
01	SampleB	L1	R3	0.222	O2	SampleB	L1	R3	0.151
01	SampleB	L2	R1	0.196	02	SampleB	L2	R1	0.178
01	SampleB	L2	R2	0.226	O2	SampleB	L2	R2	0.182
01	SampleB	L2	R3	0.184	02	SampleB	L2	R3	0.171
01	SampleB	L3	R1	0.250	02	SampleB	L3	R1	0.213
01	SampleB	L3	R2	0.247	O2	SampleB	L3	R2	0.238
01	SampleB	L3	R3	0.439	02	SampleB	L3	R3	0.221
01	SampleC	L1	R1	0.111	02	SampleC	L1	R1	0.124
01	SampleC	L1	R2	0.119	02	SampleC	L1	R2	0.129
01	SampleC	L1	R3	0.132	O2	SampleC	L1	R3	0.126
01	SampleC	L2	R1	0.128	O2	SampleC	L2	R1	0.118
01	SampleC	L2	R2	0.134	O2	SampleC	L2	R2	0.139
01	SampleC	L2	R3	0.151	O2	SampleC	L2	R3	0.104
01	SampleC	L3	R1	0.116	O2	SampleC	L3	R1	0.093
01	SampleC	L3	R2	0.147	02	SampleC	L3	R2	0.169
01	SampleC	L3	R3	0.175	O2	SampleC	L3	R3	0.096
01	SampleD	L1	R1	0.054	O2	SampleD	L1	R1	0.056
01	SampleD	L1	R2	0.084	O2	SampleD	L1	R2	0.068
01	SampleD	L1	R3	0.077	02	SampleD	L1	R3	0.062
01	SampleD	L2	R1	0.123	O2	SampleD	L2	R1	0.101
01	SampleD	L2	R2	0.119	02	SampleD	L2	R2	0.104
01	SampleD	L2	R3	0.122	02	SampleD	L2	R3	0.102
01	SampleD	L3	R1	0.084	02	SampleD	L3	R1	0.060
01	SampleD	L3	R2	0.132	02	SampleD	L3	R2	0.061
01	SampleD	L3	R3	0.127	02	SampleD	L3	R3	0.075

Table 1—Dispersion data for four TiO_2 pigments.

portant to the desired outcome, Y. Using the cause and effect matrix, we are able to rank the order of importance for the input Xs and then focus our work on collecting data for these Xs to statistically determine which are the vital few Xs that determine dispersant demand and ultimately dispersion performance.

MEASURING IMPORTANT PARAMETERS

Now that the coatings formulator knows what information must be obtained, he/she must determine how to collect that information. Another Six Sigma tool is the data collection plan. This helps to keep all operators grounded on what to measure, how often to measure, and how to collect the data. The data collection plan is essential in obtaining good information. An example of a generic data collection plan is given in *Figure* 4.

With the data collection plan at hand, the data can be collected and then analyzed using a statistical pro-

gram. For this particular work, a data collection plan was used and data collected for the four different pigments. Since we wanted to compare the different pigments in terms of dispersion performance, getting enough samples to analyze statistically was not an issue. The relevant data is given *Table* 1.

DATA ANALYSIS

After the data is collected, the coatings formulator is ready to analyze the data. This can be analyzed using any basic statistical software. For this example, data was analyzed using the Minitab[®] program.⁸ The first type of analysis is basic descriptive analysis. From this analysis, the weight percent dispersant mean and standard deviation are obtained for each sample. From the initial analysis, it appears that there is a difference in the pigments. Sample D requires the minimum amount of dispersant, followed by Sample A, then by Samples C and B, respectively.

Descriptive Statistics: Wt%Dis by TiO₂

Variable	TiO ₂	Ν	Mean	Median	TrMean	StDev
Wt%Dis	Sample A	18	0.12059	0.11180	0.11727	0.03001
	Sample B	18	0.2147	0.2032	0.2047	0.0627
	Sample C	18	0.12838	0.12715	0.12768	0.02226
	Sample D	18	0.08944	0.08360	0.08901	0.02710
Variable	TiO ₂	SE Mean	Minimum	Maximum	Q1	Q3
Wt%Dis	Sample A	0.00707	0.08640	0.20790	0.10085	0.13300
	Sample B	0.0148	0.1507	0.4386	0.1795	0.2288
	Sample C	0.00525	0.09290	0.17500	0.11463	0.14072
	Sample D	0.00639	0.05360	0.13210	0.06175	0.11948

Descriptive Statistics

Variable: Wt%Dis							
Samp	le A						
Anderson-Darling Normality Test							
A-Squared: P-Value:	0.803 0.030						
Mean StDev Variance Skewness Kurtosis N	0.120586 0.030008 9.00E-04 1.62963 3.18029 18						
Minimum 1st Quartile Median 3rd Quartile Maximum	0.086400 0.100850 0.111800 0.133000 0.207900						
95% Confidence	Interval for Mu						
0.105663	0.135508						
95% Confidence Ir	nterva l for Sigma						
0.022517	0.044986						
95% Confidence In	terva l for Mediar						
0.102122	0.129148						

Ole A 0.0010 0.803 0.030 0.120586 0.030008 0.030008 9.00E-04 1.62963 3.18029 1.8 0.086400 0.111800 0.133000 0.207900 95% Conf Interval for Mu 95% Conf 0.135508 0.12 1.12 0.12

Descriptive Statistics

Variable: Wt%Dis Sample C Anderson-Darling Normality Test

/ Indonoon Daning	intormanty root
A-Squared: P-Value:	0.258 0.676
Mean StDev Variance Skewness Kurtosis N	0.128378 0.022262 4.96E-04 0.518415 0.176405 18
Minimum 1st Quartile Median 3rd Quartile Maximum	0.092900 0.114625 0.127150 0.140725 0.175000
95% Confidence	Interval for Mu
0.117307	0.139448
95% Confidence Ir	nterval for Sigma
0.016705	0.033373
95% Confidence In	iterval for Media
0.116840	0.136373

Descriptive Statistics

Variable: Wt%Dis Sample B							
Anderson-Darling	Normality Test						
A-Squared: P-Value:	1.715 0.000						
Mean StDev Variance Skewness Kurtosis N	0.214717 0.062664 3.93E-03 2.88037 10.2207 18						
Minimum 1st Quartile Median 3rd Quartile Maximum	0.150700 0.179475 0.203200 0.228750 0.438600						
95% Confidence	nterval for Mu						
0.183554	0.245879						
95% Confidence Int	terval for Sigma						
0.047023	0.093943						
95% Confidence Int	erval for Median						
0.180363	0.223835						

Variable: Wt%Dis Sample D Anderson-Darling Normality Test A-Squared: 0.576 P-Value: 0.117

Mean StDev Variance Skewness Kurtosis N	8.94E-02 2.71E-02 7.35E-04 0.224976 -1.49325 18
Minimum 1st Quartile Median 3rd Quartile Maximum	0.053600 0.061750 0.083600 0.119475 0.132100
95% Confidence	nterval for Mu
0.075961	0.102917
95% Confidence Int	erval for Sigma
0.020338	0.040631
5% Confidence Inte	erval for Mediar
0.065104	0.110830

A more definitive type of analysis is Analysis of Variance (ANOVA). ANOVA can be used to determine if there are differences between the sample populations (as evidenced by the pigment's dispersion performance) by comparing the means of the populations.

One-way ANOVA: Wt%Dis versus TiO₂

Analysis	of Var	iance for	Wt% Dis				
Source	DF	SS	MS	F	P		
TiO ₂	3	0.15550	0.05183	34.23	0.000		
Error	68	0.10298	0.00151				
Total	71	0.25848		Individual Based on P	. 95% CIs For Pooled StDev	Mean	
Level	N	Mean	StDev	+	+	+	+
Sample A	18	0.12059	0.03001	(*)		
Sample B	18	0.21472	0.06266			(*	-)
Sample C	18	0.12838	0.02226	(*)		
Sample D	18	0.08944	0.02710	()			
				+	+	+	+
Pooled St	tDev =	0.03891		0.100	0.150	0.200	0.250

From the data shown above, it can be seen that to a 95% confidence level, the means of at least one of these pigment samples is different. Now if one would like to determine whether Sample D and Sample A are truly statistically different, another tool can be employed to distinguish between these two pigment samples: the two-sample t-test as shown below.

Two-Sample T-Test and CI: Wt%Dis_1, TiO2_1

Two-sample	T for	Wt%Dis_1			
TiO ₂ _1	Ν	Mean	StDev	SE Mean	
Sample A	18	0.1206	0.0300	0.0071	
Sample D	18	0.0894	0.0271	0.0064	
Difference	= mu	(Sample A)	- mu (San	nple D)	
Estimate f	or dif:	erence:	0.03115		
95% CI for	diffe	ence: (0.	01176, 0.0	05054)	
T-Test of P-Value :	differe = 0.003	ence = 0 (DF = 33	vs not =)	: T-Value =	3.27

In this case, with the P-value < 0.05, the two-sample t-test indicates that the mean Wt% Dis of Sample D and Sample A are not equal. Using Six Sigma tools, we have with confidence determined that there is a statistical difference between the pigments. Now, the coatings formulator can use this information to adjust the dispersant level in the formula based on the pigment in the formula.

In this study, we have used dispersion viscosity as a proxy for quality of dispersion. While in our experience this approach provides good direction for formulation development, the ultimate test remains evaluation of a fully formulated coating under typical application and drying conditions.

CONCLUSIONS

Six Sigma is a powerful methodology that has been successfully applied to many disciplines. Our goal with this work was to enable the coatings formulator to use Six Sigma in a lab situation. Now, the coatings formulator should see the value of Six Sigma as a powerful tool that can help in making statistically based decisions. In particular, this work has demonstrated how to define which parameters are important to measure, how to perform the measurements, analyze the data, and make conclusions regarding the relative difference in dispersant demand between four test pigments.

ACKNOWLEDGMENTS

The author thanks William DeCostanza and Mark Hoffman for generating the data set and working diligently to generate the information need for this paper. A special note of thanks to Marian Henze, the author's Six Sigma Black Belt mentor, who gave invaluable support during the author's Black Belt and Green Belt training. And finally, the author thanks Mike Diebold, the project sponsor and Carlos Verdejo, the Global Coatings Offering Manager, for their continued support.

References

- (1) Parfitt, G.D, Dispersion of Powder in Liquids With Special Reference to Pigments, Applied Science, London, 1981.
- (2) Patton, T.C., Paint Flow and Pigment Dispersion, John Wiley, New York, 1964.
- (3) Anderson, M.J. and Whitcomb, Patrick J., "Achieving Six Sigma Objectives for Variability Reduction in Coating Formulation and Processing," *Paint & Coatings Industry*, November 2001.
- (4) "Six Sigma Marshaling an Attack on Costs," Chemical Week, March 1, 2000.
- (5) "Hitting the Target," European Chemical News, April 3-9, 2000.
- (6) Challener, C., "Quality Initiatives: Six Sigma at Work in the Chemical Industry," *Chemical Market Reporter*, September 9, 2002.
- (7) American Society of Quality, www.asq.org.
- (8) Ryan, B. and Joiner, Brian L., *Minitab Handbook, Fourth Edition*, Duxbury Thomson Learning, U.S., 2001.